Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472526

RESUMO

Emergence of SARS-CoV-2 as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts and rapid emergence of new variants urge for establishment of research infrastructure to facilitate rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, five SARS-CoV2 strains (ILS01, ILS02, ILS03, ILS15 and ILS24) of four different clades (19A, 19B, 20A and 20B) were isolated from patient swab samples collected during the 1st COVID-19 wave in Odisha, India. The viral isolates were adapted to in-vitro cultures and further characterized to identify strain specific variations in viral growth characteristics. All the five isolates showed substantial amount of virus induced CPE however ILS03 belonging to 20A clade displayed highest level of CPE. Time kinetics experiment revealed spike protein expression was evident after 16th hours post infection in all five isolates. ILS03 induced around 90% of cytotoxicity. Further, the susceptibility of various cell lines (human hepatoma cell line (Huh-7), CaCo2 cell line, HEK-293T cells, Vero, Vero-E6, BHK-21, THP-1 cell line and RAW 264.7 cells) were assessed. Surprisingly, it was found that the human monocyte cells THP-1 and murine macrophage cell line RAW 264.7 were permissive to all the SARS-CoV-2 isolates. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government run vaccine drive in India. The micro-neutralization assay suggested that both Covaxin and Covishield vaccines were equally effective (100% neutralization) against all of the isolates. The whole genome sequencing of culture adapted viral isolates and viral genome from patient oropharyngeal swab sample suggested that repetitive passaging of SARS-CoV2 virus in Vero-E6 cells did not lead to emergence of many mutations during the adaptation in cell culture. Phylogenetic analyses revealed that the five isolates clustered to respective clades. The major goal was to isolate and adapt SARS-CoV-2 viruses in in-vitro cell culture with minimal modification to facilitate research activities involved in understanding the molecular virology, host-virus interactions, application of these strains for drug discovery and animal challenge models development which eventually will contribute towards the development of effective and reliable therapeutics.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257211

RESUMO

BackgroundThe current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and genomic characterization from the patients to understand the pathophysiology of viral infection. MethodsSamples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, treatment regime were collected from hospital, viral load was determined by RT-PCR, levels of cytokines and circulating antibodies in plasma were assessed by Bioplex and isotyping respectively. In addition, the whole genome sequencing of viral strains and mutational analysis were carried out. FindingsAnalysis of the biochemical parameters highlighted the increased levels of C-Reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT and ferritin in symptomatic patients indicating that patients with higher levels of few biochemical parameters might experience severe pathophysiological complications after SARS-CoV-2 infection. This was also observed that symptomatic patients were mostly with one or more comorbidities, especially diabetes (66.6%). Surprisingly the virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. This suggests that the viral load in OP sample does not correlate with the disease severity and both asymptomatic and symptomatic patients are equally capable of transmitting the virus. Whereas, viral load was higher in plasma and serum samples of symptomatic patients suggesting that the development of clinical complications is mostly associated to high viral load in plasma and serum. This also demonstrated that the patients with high viral load in plasma and serum samples were found to develop sufficient amounts of antibodies (IgG, IgM and IgA). Interestingly, the levels of 7 cytokines (IL-6, IL-.1, IP-10, IL-8, IL-10, IFN-2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO and MDC) were remarkably higher in asymptomatic patients. Therefore, this data suggest that cytokines and chemokines may serve as "predictive indicator" of SARS-CoV-2 infection and contribute to understand the pathogenesis of COVID-19. The whole genome sequence analysis revealed that the current isolates were clustered with 19B, 20A and 20B clades, however acquired 11 additional changes in Orf1ab, spike, Orf3a, Orf8 and nucleocapsid proteins. The data also confirmed that the D614G mutation in spike protein is mostly linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load and among them two patients with this mutation passed away. InterpretationThis is the first comprehensive study of SARS CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and advance in the implementation of effective disease control strategies. FundingThis study was supported by the core funding of Institute of Life Sciences, Bhubaneswar, Dept of Biotechnology, India. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSAsymptomatic patients are a source of concern as measures taken to control the spread of the virus are severely impacted by their undetectability. Presently, there is an inadequate information about the characteristics of the asymptomatic and symptomatic patients. The association between SARS-CoV-2 viral load, cytokines and risk of disease progression remains unclear in COVID-19 in Indian scenario. PubMed was searched for articles published up to May, 2021, using the keywords "SARS CoV-2 patients in India", or "2019 novel coronavirus patients in India". No published work about the patients data on SARS CoV-2 in Indian scenario could be identified. Added value of this studyThis investigation highlights the ability of both asymptomatic and symptomatic patients to transmit the virus equally. This study also demonstrates that the D614G mutation in the spike protein is associated with severe SARS-CoV-2 infection and enhance levels of inflammatory markers such as CRP and ferritin which can be predictive biomarkers for critical condition of patients. This is the first comprehensive study of SARS CoV-2 patients from India and will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection by advancing the implementation of effective disease control strategies. Implications of all the available evidenceThe current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and viral genome sequencing to understand the pathophysiology of this virus infection. Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. This investigation highlights the ability of both asymptomatic and symptomatic patients to transmit the virus equally. This also demonstrated that the D614G mutation is mostly associated with higher virus replication capacity and severe SARS-CoV-2 infection and enhanced levels of inflammatory markers such as CRP and ferritin which are associated with critical conditions of patients. This is the first comprehensive study of SARS CoV-2 patients from India and will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection by advancing the implementation of competent disease control strategies.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434371

RESUMO

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology that resembles human COVID-19 patients. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples shows a similar type of pathophysiological manifestation of SARS-CoV-2 infection as reported earlier in COVID-19 patients and hamsters infected with other isolates. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14dpi. Here, we carried out quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters at day 4 and day 14 post infection. This resulted in the identification of 1,585 differentially expressed proteins of which 68 proteins were significantly altered among both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in the identification of candidate biomarkers and understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=143 HEIGHT=200 SRC="FIGDIR/small/434371v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): org.highwire.dtl.DTLVardef@1930556org.highwire.dtl.DTLVardef@14376d6org.highwire.dtl.DTLVardef@2f064eorg.highwire.dtl.DTLVardef@1472572_HPS_FORMAT_FIGEXP M_FIG C_FIG

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-177154

RESUMO

Recently, the Syrian golden hamster (Mesocricetus auratus) has been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers optimal use of these models. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin{square}converting enzyme 2 (ACE2), a proven functional receptor for SARS-CoV-2 in different organs of the hamster. We have adapted immunoblot analysis, immunohistochemistry, and immunofluorescence analysis techniques to evaluate the ACE2 expression pattern in different tissues of the Syrian golden hamster. We found that kidney, small intestine, esophagus, tongue, brain, and liver express ACE2. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections for ACE2 showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine (caecum, colon, and rectum) were negative for ACE2 expression. Together, our findings corroborate some of the earlier reports related to ACE2 expression pattern in human tissues and also contradicts some others. We believe that the findings of this study will enable the appropriate use of the Syrian golden hamster to carryout SARS-CoV-2 related studies.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20113167

RESUMO

In infectious diseases, the routes of transmission play major roles in determining the rate and extent of disease spread. Though fomites and aerosol droplets are major sources of SARS-CoV-2 human to human transmission, studies have also reported possible involvement of other routes of transmission like fecal-oral. Multiple studies around the world have reported shedding of the SARS-CoV-2 viral genome in certain COVID-19 patient fecal samples. Hence, the major objective of this study was to get the experimental evidence whether in Indian COVID-19 patients fecal dissemination of the SARS-CoV-2 genome occurs or not. Information obtained from twelve number of patients from a COVID-19 hospital of Odisha has demonstrated that both symptomatic and asymptomatic Indian patients could be positive for the SARS-CoV-2 genome in their fecal component. The findings have also established a protocol to collect and extract viral RNA for SARS-CoV-2 detection in fecal samples. Together, the study supports the hypothesis of possible fecal-oral transmission of SARS-CoV-2 virus and provides a rationale to extend this study in a larger cohort of patient samples and correlate the significance of the SARS-CoV-2 virus genome detection in fecal samples with disease severity and transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...