Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Mol Neurosci ; 11: 246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158853

RESUMO

Isolation stress is a major risk factor for neuropsychiatric disorders such as depressive and anxiety disorders. However, the molecular mechanisms underlying isolation-induced neuropsychiatric disorders remain elusive. In the present study, we investigated the subcellular mechanisms by which long-term isolation elicits depression and anxiety-related behaviors in mice. First, we found that long-term isolation induced depression-related behaviors in the forced swimming test (FST) and the sucrose preference test, as well as anxiety-related behaviors in the elevated zero maze test (EZMT) and the open field test. Next, we showed that intracentral amygdala (CeA) injection of oxytocin (OXT), but not intracerebroventricular injection, attenuated isolation-induced depression and anxiety-related behaviors via oxytocin receptor (OXTR), not vasopressin-1a receptor (V1aR), in the FST and EZMT, respectively. Quantitative real-time polymerase chain reaction analysis revealed that after 5 weeks of isolation, mRNA transcription of OXTR in the CeA, but not that of V1aR, significantly decreased, whereas OXT and vasopressin mRNA transcription in the paraventricular nucleus of hypothalamus did not change significantly. Whole-cell patch clamping of acute brain slices demonstrated that the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in CeA neurons, but not their amplitude, was lower in isolated mice than in group-housed mice. Notably, OXT treatment increased the mIPSC frequency in the CeA neurons, but to a lesser extent in the case of isolated mice than in that of group-housed mice via OXTR. Taken together, our findings suggest that long-term isolation down-regulates OXTR mRNA transcription and diminishes OXT-induced inhibitory synaptic transmission in the CeA and may contribute to the development of depression and anxiety-related behaviors in isolated mice through the enhancement of CeA activity.

2.
Yonsei Medical Journal ; : 279-286, 2018.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-713092

RESUMO

PURPOSE: The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. MATERIALS AND METHODS: We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(−/−)-NP). RESULTS: During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(−/−)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. CONCLUSION: Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents.


Assuntos
Animais , Feminino , Gravidez , Coelhos , Potenciais de Ação/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eletrocardiografia , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Ratos Sprague-Dawley , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia
3.
Yonsei Medical Journal ; : 736-745, 2018.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-716430

RESUMO

PURPOSE: Bioactive molecules critical to intracellular signaling are contained in extracellular vesicles (EVs) and have cardioprotective effects in ischemia/reperfusion (IR) injured hearts. This study investigated the mechanism of the cardioprotective effects of EVs derived from hypoxia-preconditioned human mesenchymal stem cells (MSCs). MATERIALS AND METHODS: EV solutions (0.4 µg/µL) derived from normoxia-preconditioned MSCs (EVNM) and hypoxia-preconditioned MSCs (EVHM) were delivered in a rat IR injury model. Successful EV delivery was confirmed by the detection of PKH26 staining in hearts from EV-treated rats. RESULTS: EVHM significantly reduced infarct size (24±2% vs. 8±1%, p < 0.001), and diminished arrhythmias by recovering electrical conduction, INa current, and Cx43 expression. EVHM also reversed reductions in Wnt1 and β-catenin levels and increases in GSK3β induced after IR injury. miRNA-26a was significantly increased in EVHM, compared with EVNM, in real-time PCR. Finally, in in vitro experiments, hypoxia-induced increases in GSK3β expression were significantly reduced by the overexpression of miRNA-26a. CONCLUSION: EVHM reduced IR injury by suppressing GSK3β expression via miRNA-26a and increased Cx43 expression. These findings suggest that the beneficial effect of EVHM is related with Wnt signaling pathway.


Assuntos
Animais , Humanos , Ratos , Arritmias Cardíacas , Conexina 43 , Vesículas Extracelulares , Coração , Técnicas In Vitro , Células-Tronco Mesenquimais , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão , Via de Sinalização Wnt
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-54236

RESUMO

BACKGROUND: The Htr3a antagonist, ondansetron, has been reported to prolong the QT interval and induce Torsades de pointes in the treatment of postoperative nausea and vomiting. To explore the mechanisms underlying these findings, we examined the effects of ondansetron on the mouse cardiac voltage-gated K⁺ (Kv) channel. METHODS AND RESULTS: Ondansetron increased QT intervals in late pregnant (LP) mice. We measured the Kv channels in freshly isolated left ventricular (LV) myocytes from non-pregnant (NP) and late pregnant (LP) mice, using patch-clamp electrophysiology. Ondansetron blocked Kv current at a dose of 50 µM, and reduced the amplitude of peak current densities in a dose-dependent manner (0, 1, 5, 50 µM), in LP but not in NP mice. In contrast, serotonin and the Htr3 agonist, m-CPBG, increased Kv current densities in NP, but not in LP mice. Interestingly, during pregnancy, serum serotonin levels were markedly increased, suggesting the saturation of the effect of serotonin. Immunostaning data showed that Kv4.3 protein and Htr3a co-localize at the membrane and t-tubule of cardiomyocytes. Moreover, Kv4.3 membrane trafficking was enhanced in response to Htr3a-mediated serotonin stimulation in NP, but not in LP mice. Membrane analysis showed that serotonin enhances Kv4.3 membrane trafficking in NP, but not LP mice. CONCLUSION: Ondansetron reduced Kv current densities, and reduced the Kv4.3 membrane trafficking in LP mouse ventricular cardiomyocytes. This data suggests that QT prolongation by ondansetron is mediated by the reduction of Kv current densities and Kv4.3 membrane trafficking.


Assuntos
Animais , Camundongos , Gravidez , Eletrofisiologia , Membranas , Células Musculares , Miócitos Cardíacos , Ondansetron , Náusea e Vômito Pós-Operatórios , Serotonina , Torsades de Pointes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...