Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 327: 117999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447616

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY: In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS: The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS: Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION: The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.


Assuntos
Carcinoma Hepatocelular , Colite , Gastrite , Neoplasias Hepáticas , Melatonina , Hepatopatia Gordurosa não Alcoólica , Portulaca , Animais , Humanos , Medicina Tradicional Chinesa , Fitoterapia , Portulaca/química , Quempferóis , Quercetina , Apigenina , Genisteína , Luteolina , Inflamação
2.
J Ethnopharmacol ; 317: 116676, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279814

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Huatan Recipe (JPHTR) is an effective prescription for delaying progression of hepatocellular carcinoma (HCC) provided by Longhua Hospital affiliated to Shanghai University of traditional Chinese Medicine, and it is consisted of nine traditional Chinese drugs, but the protective mechanism of JPHTR against HCC progression is unclear. AIM OF THE STUDY: To study the mechanism of JPHTR preventing the progression of HCC based on the network pharmacology. MATERIALS AND METHODS: The chemical component and potential gene targets of JPHTR and the important gene targets of HCC were obtained by retrieving traditional Chinese medicine network pharmacology analysis system (TCMNPAS) database. The data obtained from the database are used to construct the drugs-chemical component-targets network and protein-protein interaction network by using Cytoscape software and STRING database. The potential targets of JPHTR and HCC targets were imported into TCMNPAS-related modules in order to obtain the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Finally, we used HCC rat model to verify the vital signaling pathways predicted by network pharmacology. RESULTS: A total of 197 potential compounds and 721 potential targets of JPHTR and 611 important gene targets of HCC were obtained. Through the experiment in vivo, it was found that JPHTR can reduce the serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, reduce the lipid droplets and inflammatory injury of liver tissue, and reduce the mRNA expression of Interleukin-6 (Il-6), Janus tyrosine Kinase2 (Jak2) and Forkhead box O3 (Foxo3) in FOXO pathway in the liver, thus delaying the development of HCC. CONCLUSION: Through network pharmacology and rat experiments, it is preliminarily confirmed that JPHTR may delay the progression of HCC by regulating the expression of Il-6/Jak2/Foxo3 in FOXO signal pathway, which is expected to be a new therapeutic target for the protection of HCC.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Animais , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Interleucina-6 , Farmacologia em Rede , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , China , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
3.
Front Pharmacol ; 13: 944088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873545

RESUMO

Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.

4.
J Cancer ; 13(8): 2430-2439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711841

RESUMO

Lysophosphatidylcholine acyltransferases (LPCATs) are among the lysophopholipid acyltransferases (LPLATs) that specifically regulate the abundance of different phosphatidylcholine (PC) species in a variety of cell and tissue types, thereby playing an important role in lipid metabolism and homeostasis. Lysophosphatidylcholine acyltransferase 3 (LPCAT3, MBOAT5) is a member of the LPCAT family that primarily regulates the levels of arachidonic PC species. LPCAT3 is regulated by the liver X receptor, which plays an important role in lipoprotein production in the liver and small intestine. Increasing lines of research have demonstrated that LPCAT3 plays important roles in the occurrence and development of many diseases, such as atherosclerosis, intestinal tumors, and nonalcoholic steatohepatitis (NASH). The development of many diseases has been linked to the proinflammatory effects of LPCAT3. This review focuses on the current knowledge of LPCAT3, including its function and mechanism in different diseases. We aim to provide a comprehensive and in-depth understanding of LPCAT3 and to provide new ideas for the treatment of some diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...