Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38047560

RESUMO

Conductive ink deposited on flexible substrates through simple methods such as dyeing or printing is one of the most promising approaches for scalable fabrication of wearable electronics. However, excessive chemical additives or a complex preparation process has limited the practical applications of conductive inks. Herein, a highly stable and antibacterial AgNPs/CNT/rGO (SACR) conductive ink with the only assistance of sustainable silk sericin (SS) is developed through a green one-step strategy. SS functions as not only the reductant of silver ions and GO by donating electrons but also the dispersant and stabilizer of CNTs through strong noncovalent interactions. The universality of SACR ink is demonstrated by depositing on various flexible substrates through handwriting, screen-printing, and dyeing techniques; meanwhile, the mechanical reliability between SACR ink and substrates is validated by peeling, bending, and twisting measurements. In addition, the synergistic effects of the multilevel hierarchical 0D/1D/2D structure and abundant interfacial interactions in SACR ink are advantageous to enhancing sensing performance. An SACR ink-based strain sensor and hydrogen peroxide (H2O2) sensor are fabricated to detect physical and biochemical indicators, demonstrating the enormous potential of SACR ink in intelligent wearables for active health monitoring in early care.

2.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987365

RESUMO

An integrated solution providing a bi-stable antenna with reconfigurable performance and light-responsive behavior is presented in this paper for the first time. The proposed antenna includes a radiation layer with conductivity, which is integrated onto the bi-stable substrate. First, the effect of the radiation layer material and substrate layer parameters on antenna performance was studied. The experiment showed that an antenna with CNTF has a wider impedance bandwidth than one with CSP, namely 10.37% versus 3.29%, respectively. The resonance frequency increases gradually with the increase in fiber laying density and fiber linear density. Second, the influence of state change of the substrate layer on the antenna radiation pattern was studied. The measured results showed that the maximum radiation angle and gain of states I and II are at 90°, 1.21 dB and 225°, 1.53 dB, respectively. The gain non-circularities of the antenna at states I and II are 4.48 dB and 8.35 dB, respectively, which shows that the antenna has good omnidirectional radiation performance in state I. The display of the array antenna, which shows that the array antenna has good omnidirectional radiation performance in state A, with gain non-circularities of 4.20 dB, proves the feasibility of this bi-stable substrate in reconfigurable antennas. Finally, the antenna deforms from state I to state II when the illumination stimulus reaches 22 s, showing good light-responsive behavior. Moreover, the bi-stable composite antenna has the characteristics of small size, light weight, high flexibility, and excellent integration.

3.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365560

RESUMO

Polyimide (PI) films with excellent heat resistance and outstanding mechanical properties have been widely researched in microelectronics and aerospace fields. However, most PI films can only be used under ordinary conditions due to their instability of dimension. The fabrication of multifunctional PI films for harsh conditions is still a challenge. Herein, flexible, low coefficient of thermal expansion (CTE) and improved mechanical properties films modified by carboxylated carbon nanotube (C-CNT) were fabricated. Acid treatment was adapted to adjust the surface characteristics by using a mixture of concentrated H2SO4/HNO3 solution to introduce carboxyl groups on the surface and improve the interfacial performance between the CNT and matrix. Moreover, different C-CNT concentrations of 0, 1, 3, 5, 7, and 9 wt.% were synthesized to use for the PI film fabrication. The results demonstrated that the 9 wt.% and 5 wt.% C-CNT/PI films possessed the lowest CTE value and the highest mechanical properties. In addition, the thermal stability of the C-CNT/PI films was improved, making them promising applications in precise and harsh environments.

4.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566833

RESUMO

In order to study the mechanical behavior and energy dissipation of architectural membrane materials under multistage cyclic loading, the deformation behavior, energy dissipation, and damage characteristics of four kinds of warp-knitted and woven polyvinyl chloride (PVC) membrane materials were analyzed using multistage cyclic loading experiments. The results show that, compared with the uniaxial tensile strength, the peak values of the cyclic loading and unloading of the four material samples are lower in the warp direction but higher in the fill (weft) direction. Under multistage cyclic loading, the loading and unloading moduli of the warp knitting membrane increase with the increase in fabric density. At the same fabric density, the loading modulus and the unloading modulus are smaller than those of the warp knitting material. The total absorbed strain energy, elastic strain energy, and dissipation energy of the fill samples are higher than those of the warp samples at a low load level but lower than those at a high load level. PVC membrane materials' use strength should be controlled below a 15% stress level under long-term external force loading. In the cyclic loading process, the four PVC membrane materials are viscoelastic-plastic, so it is reasonable to define the damage variable based on the accumulation of plastic deformation.

5.
ACS Appl Mater Interfaces ; 14(7): 9632-9643, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35135192

RESUMO

Although Ti3C2Tx MXene/fabric composites have shown promise as flexible pressure sensors, the effects of MXene composition and structure on piezoresistive properties and the effects of the textile structure on sensitivity have not been systematically studied. Herein, impregnation at room temperature was used as a cost-effective and scalable method to prepare composite materials using different fabrics [plain-woven fabric, twill-woven fabric, weft plain-knitted fabric, jersey cross-tuck fabric, and nonwoven fabric (NWF)] and MXene nanosheets (Ti3C2Tx, Ti2CTx, Ti3CNTx, Mo2CTx, Nb2CTx, and Mo2TiC2Tx). The MXene nanosheets adhered to the fabric surface through hydrogen bonding, resulting in a conductive network structure. The Ti3C2Tx@NWF composite was found to be the optimal flexible pressure sensor, demonstrating high sensitivity (6.31 kPa-1), a wide sensing range (up to 150 kPa), fast response/recovery times (300 ms/260 ms), and excellent durability (2000 cycles). Furthermore, the sensor was successfully used to monitor full-scale human motion, including pulse, and a 4 × 4 pixel flexible sensor array was shown to accurately locate pressure and recognize the pressure magnitude. These findings provide a basis for the rational design of MXene/textile composites as wearable pressure sensors for medical diagnosis, human-computer interactions, and electronic skin applications.

6.
Chemosphere ; 290: 133263, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34906531

RESUMO

This study put forward a one-step carbonization method by concentrated sulfuric acid to prepare garlic peel derived biochar, and the synthetic conditions were optimized by L16(45) orthogonal experiments. Notably, in order to study the differences between the proposed synthetic method and the conventional pyrolysis method, the concentrated sulfuric acid carbonized garlic peels biochar (CSGPB) was compared with pyrolysis derived garlic peel biochar (HTGPB) in characterization and adsorption capacities for Enrofloxacin (ENR). Results showed that CSGPB exhibited more graphite-like structures with more active functional groups on the surface, and the equilibrium adsorption capacity of CSGPB (142.3 mg g-1) was 13.7 times of HTGPB (10.4 mg g-1) under identical conditions. Moreover, the adsorption behaviors including adsorption kinetics, isotherms and thermodynamics of CSGPB for ENR were fully investigated and discussed. Based on the above experiments, density functional theory (DFT) simulations were performed to reveal the interfacial interaction and adsorption mechanism. Results showed π-π interaction between quinolone moieties of ENR and graphite-like structures in CSGPB might be the dominant mechanism. As for the functional groups, the adsorption energies were -40.46, -15.21 and -5.96 kJ mol-1 for -SO3H, -OH and -COOH, respectively, which indicated -SO3H was the most active functional groups on the surface of CSGPB. This study provided a new sustainable perspective for the design of efficient biochars, and explored the interfacial interaction mechanism of antibiotics removal on biochars.


Assuntos
Alho , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Enrofloxacina , Cinética , Ácidos Sulfúricos , Poluentes Químicos da Água/análise
7.
Indoor Air ; 31(6): 2142-2157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34337798

RESUMO

Humans emit carbon dioxide (CO2 ) as a product of their metabolism. Its concentration in buildings is used as a marker of ventilation rate (VR) and degree of mixing of supply air, and indoor air quality (IAQ). The CO2 emission rate (CER) may be used to estimate the ventilation rate. Many studies have measured CERs from subjects who were awake but little data are available from sleeping subjects and the present publication was intended to reduce this gap in knowledge. Seven females (29 ± 5 years old; BMI: 22.2 ± 0.8 kg/m2 ) and four males (27 ± 1 years old; BMI: 20.5 ± 1.5 kg/m2 ) slept for four consecutive nights in a specially constructed capsule at two temperatures (24 and 28°C) and two VRs that maintained CO2  levels at ca. 800 ppm and 1700 ppm simulating sleeping conditions reported in the literature. The order of exposure was balanced, and the first night was for adaptation. Their physiological responses, including heart rate, pNN50, core body temperature, and skin temperature, were measured as well as sleep quality, and subjective responses were collected each evening and morning. Measured steady-state CO2 concentrations during sleep were used to estimate CERs with a mass-balance equation. The average CER was 11.0 ± 1.4 L/h per person and was 8% higher for males than for females (P < 0.05). Increasing the temperature or decreasing IAQ by decreasing VR had no effects on measured CERs and caused no observable differences in physiological responses. We also calculated CERs for sleeping subjects using the published data on sleep energy expenditure (SEE) and Respiratory Quotient (RQ), and our measured CERs confirmed both these calculations and the CERs predicted using the equations provided by ASHRAE Standard 62.1, ASHRAE Handbook, and ASTM D6245-18. The present results provide a valuable and helpful reference for the design and control of bedroom ventilation but require confirmation and extension to other age groups and populations.


Assuntos
Poluição do Ar em Ambientes Fechados , Dióxido de Carbono , Adulto , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Feminino , Humanos , Masculino , Sono , Temperatura , Ventilação , Adulto Jovem
8.
RSC Adv ; 11(42): 26151-26159, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479464

RESUMO

Volatile organic compounds (VOCs) emitting from building materials are one of the main sources of indoor pollution. Environmental factors have obvious effects on VOC emissions from building materials. However, no unified conclusions have been achieved on the influence of relative humidity (RH) and air change rate (ACR), and there is little research on the correlations of RH and ACR with parameters in VOCs emission fitting models. Therefore, factor analysis was applied in this paper to study the influence of RH and ACR on VOCs emissions. Medium density fibreboard pannels with the coating of oil-based paint were applied at four ACR (0.5 h-1, 1.0 h-1, 2.0 h-1, 3.0 h-1) and four RH (20%, 30%, 50%, 70%) conditions in 60 L environmental chambers. Tenax TA tubes were used to collect VOCs and thermal desorption-gas chromatography mass spectrometry was applied to determine the concentrations. The results show that RH influences the initial stage of VOCs emission and has a positive correlation with the emission concentrations. In the later emission stage, RH has no obvious influence on VOCs emissions, while the concentrations of VOCs are inversely proportional to ACR. The parameters in the single exponential model a 1 and b 1 have power-law or polynomial relationships with ACR and RH. ACR has negative correlations with a 1 and positive correlations with b 1, resulting in a negative influence on VOCs emissions, while RH has a complex influence on VOCs emissions. This study elucidated how RH and ACR impact VOCs emissions from oil-based paint coating medium density fibreboard and further influence human health exposure risks, which can then be used to improve indoor air quality.

9.
Polymers (Basel) ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660048

RESUMO

A systematic experimental study was performed to detect the compaction and permeability properties of multilayered biaxial and quadriaxial preforms under vacuum pressure. Compression response on ply level showed that the degree of nesting between quadriaxial NCF was more pronounced and the nesting deformation mechanism was affected by the interaction with stitch yarns. Owing to the meso-channels in the fibrous structure and the nesting between layers, the in-plane permeability of quadriaxial NCF did not follow an inverse proportion relationship with the fiber volume fraction. To predict the in-plane permeability of multilayered quadriaxial NCFs, unit cell models at a high level of geometrical details were built, including local variations in yarn cross-sections and the nesting deformation between layers. Numerical methods were implemented, and the prediction results were in very good agreement with the experimental data. Besides, the major contributing parameters to the enhancement of the in-plane permeabilities were identified by investigating the correlation between permeability and structural parameters of quadriaxial NCF. The modeling methodology and the principles established can be applied to the design of the quadriaxial NCF fabrics, where the permeability enhancement was evidenced.

10.
Sci Total Environ ; 704: 135342, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896216

RESUMO

Volatile organic compounds (VOCs) concentrations of dry building materials can significantly affect the quality of indoor air. In this paper, a spatial fractional diffusion model is established by introducing fractional Fick's law, based on the fact that the pore structure of porous building materials has a strongly impact on VOCs diffusion. Furthermore, the areal porosity of the material is drawn into the convection mass transfer equation. The relevant parameters are estimated by a kind of optimization algorithm. The fractional nonlinear equations are tackled by the finite difference method combined with L2-algorithm. Results indicate that spatial fractional diffusion model agrees better with the experimental data than Deng and Kim's model. The spatial fractional diffusion model is used to describe the formaldehyde concentration in the particleboard according to the experimental data. Taking formaldehyde as a common substance, the influences of physical parameters on VOCs diffusion are predicted by this model. The results of numerical simulation demonstrate that the diffusion is consistent with the actual situation.

11.
Materials (Basel) ; 11(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332825

RESUMO

Warp-knitted meshes have been widely used for structural reinforcement of rigid, semi-rigid, and flexible composite materials. In order to meet the performance requirements of different engineering applications, four typical warp-knitted meshes (rectangular, square, circular, and diamond) were designed and developed. The mechanical behaviors of these meshes under mono-axial and multi-axial tensile loads were compared. The influence of the initial notch length and orientation on the mechanical performance was also analyzed. The results showed that the biaxial tensile behavior of warp-knitted meshes tended to be more isotropic. The anisotropy level of the diamond warp-knitted mesh was the lowest (λ = 0.099), while the rectangular one was the highest (λ = 0.502). The notch on a significantly anisotropic mesh was propagated along the direction of larger modulus, while for a not remarkably anisotropic mesh, notch propagation was probably consistent with the initial notch orientation. The breaking strength of warp-knitted meshes with the same initial notch orientation decreased with the increase in notch length in both the wale and course directions. For warp-knitted meshes with the same initial notch length, the breaking strength in the wale direction was kept stable at different notch orientations, while that in the course direction decreased remarkably with notch orientation from 0° to 90°.

12.
Materials (Basel) ; 11(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154375

RESUMO

Glass warp-knitted fabrics have been widely used as complex structural reinforcements in composites, such as wind turbine blades, boats, vehicles, etc. Understanding the mechanical behavior and formability of these textiles is very necessary for the simulation of forming processes before manufacturing. In this paper, the shear deformation mechanics of glass warp-knitted non-crimp fabrics (WKNCF) were experimentally investigated based on a picture frame testing apparatus equipped to a universal testing machine. Three commercially available fabrics of WKNCFs were tested for four cycles by the picture frame method. The aim was to characterize and compare the shear behavior of relatively high areal density fabrics during preform processing for composites. The energy normalization theory was used to obtain the normalized shear force from the testing machine data; then, the shear stress against the shear angle was fitted by cubic polynomial regression equations. The results achieved from the equations demonstrated that the in-plane shear rigidity modulus was associated with the shear angle. The effect of the shearing cycles and stitching pattern on shear resistance was also analyzed.

13.
Polymers (Basel) ; 10(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-30960620

RESUMO

Interface issues urgently need to be addressed in high-performance fiber reinforced composites. In this study, different periods of O2 plasma treatment are proposed to modify twist-free polyimide (PI) filaments to improve hydrophilicity and mechanical and interfacial properties. Feeding O2 produces chemically active particles to modify the filament surface via chemical reactions and physical etching. According to the X-ray photoelectron spectroscopy (XPS) results, the PI filaments exhibit an 87.16% increase in O/C atomic ratio and a 135.71% increase in the C⁻O functional group after 180 s O2 plasma treatment. The atomic force microscope (AFM) results show that the root mean square roughness (Rq) of the treated PI filaments increases by 105.34%, from 38.41 to 78.87 nm. Owing to the increased surface oxygenic functional groups and roughness after O2 plasma treatment, the contact angle between treated PI filaments and water reduces drastically from the pristine state of 105.08° to 56.15°. The O2 plasma treated PI filaments also demonstrate better mechanical properties than the pristine PI filaments. Moreover, after O2 plasma treatment, the adhesion between PI filaments and poly(amic acid) (PAA) is enhanced, and the tensile strength of the polyimide/poly(amic acid) (PI/PAA) self-reinforced composites increases from 136 to 234 MPa, even causing the failure mode of the composite changes from adhesive failure to partly cohesive failure.

14.
Polymers (Basel) ; 9(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966034

RESUMO

In this work, polyimide (PI) was coated onto an ultrafine gilt molybdenum wire in order to protect the gilt surface and prepare an electrically stable wire mesh material which can be widely used in space. The surface of the PI-coated gilt molybdenum wires was characterized using FTIR, SEM, and EDS. Factors such as temperature stability of the PI coating, mechanical properties of the PI-coated gilt molybdenum wires, contact resistance stability, and electromagnetic microwave reflectivity of the their knitted meshes were also investigated. The results indicate that the PI coating conformed uniformly to the surface of the gilt molybdenum wires. The prepared PI coating exhibited excellent temperature stability in the -196 to 300 °C range and could efficiently protect the gilt surface and improve the stability of contact resistance, while the reflection of its wire meshes showed only a slight decrease of 1.4% with the PI coating thickness of 3 µm for electromagnetic microwaves in the S band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...