Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
World J Oncol ; 15(4): 695-710, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993245

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors originating from the digestive system. Tertiary lymphoid structures (TLS), non-lymphoid tissues outside of the lymphoid organs, are closely connected to chronic inflammation and tumorigenesis. However, the detailed relationship between TLS and HCC prognosis remained unclear. In this study, we aimed to construct a TLS-related gene signature for predicting the prognosis of HCC patients. Methods: The Cancer Genome Atlas (TCGA) clinical data from 369 HCC tissues and 50 normal liver tissues were utilized to examine the differential expression of TLS-related genes. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, the prognostic model was constructed using the TCGA cohort and validated in the GSE14520 cohort and International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Furthermore, Cox regression analysis was applied to identify whether the TLS score could be employed as an independent prognosis factor. A nomogram was developed to predict the survival probability of HCC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for TLS-related genes. Genetic mutation analysis, the CIBERSORT algorithm, and single-sample gene set enrichment analysis (ssGSEA) were used to assess the tumor mutation landscape and immune infiltration. Finally, the role of the TLS score in HCC therapy was investigated. Results: Six genes were included in the construction of our prognostic model (CETP, DNASE1L3, PLAC8, SKAP1, C7, and VNN2), and we validated its accuracy. Survival analysis showed that patients in the high-TLS score group had a significantly better overall survival than those in the low-TLS score group. Univariate, multivariate Cox regression analysis and the establishment of a nomogram indicated that the TLS score could independently function as a potential prognostic marker. A significant association between TLS score and immunity was revealed by an analysis of gene alterations and immune cell infiltration. In addition, two subtypes of the TLS score could accurately predict the effectiveness of sorafenib, transcatheter arterial chemoembolization (TACE), and immunotherapy in HCC patients. Conclusion: In this research, we conducted and validated a prognostic model associated with TLS that may be helpful for predicting clinical outcomes and treatment responsiveness for HCC patients.

2.
Quant Imaging Med Surg ; 14(7): 5099-5108, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022293

RESUMO

Background: The effect of diagnosing Graves' ophthalmopathy (GO) through traditional measurement and observation in medical imaging is not ideal. This study aimed to develop and validate deep learning (DL) models that could be applied to the diagnosis of GO based on magnetic resonance imaging (MRI) and compare them to traditional measurement and judgment of radiologists. Methods: A total of 199 clinically verified consecutive GO patients and 145 normal controls undergoing MRI were retrospectively recruited, of whom 240 were randomly assigned to the training group and 104 to the validation group. Areas of superior, inferior, medial, and lateral rectus muscles and all rectus muscles on coronal planes were calculated respectively. Logistic regression models based on areas of extraocular muscles were built to diagnose GO. The DL models named ResNet101 and Swin Transformer with T1-weighted MRI without contrast as input were used to diagnose GO and the results were compared to the radiologist's diagnosis only relying on MRI T1-weighted scans. Results: Areas on the coronal plane of each muscle in the GO group were significantly greater than those in the normal group. In the validation group, the areas under the curve (AUCs) of logistic regression models by superior, inferior, medial, and lateral rectus muscles and all muscles were 0.897 [95% confidence interval (CI): 0.833-0.949], 0.705 (95% CI: 0.598-0.804), 0.799 (95% CI: 0.712-0.876), 0.681 (95% CI: 0.567-0.776), and 0.905 (95% CI: 0.843-0.955). ResNet101 and Swin Transformer achieved AUCs of 0.986 (95% CI: 0.977-0.994) and 0.936 (95% CI: 0.912-0.957), respectively. The accuracy, sensitivity, and specificity of ResNet101 were 0.933, 0.979, and 0.869, respectively. The accuracy, sensitivity, and specificity of Swin Transformer were 0.851, 0.817, and 0.898, respectively. The ResNet101 model yielded higher AUC than models of all muscles and radiologists (0.986 vs. 0.905, 0.818; P<0.001). Conclusions: The DL models based on MRI T1-weighted scans could accurately diagnose GO, and the application of DL systems in MRI may improve radiologists' performance in diagnosing GO and early detection.

3.
Hypertens Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877311

RESUMO

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.

4.
Breast ; 76: 103760, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896982

RESUMO

PURPOSE: Pure mucinous breast cancer (PMC) is a rare histological type with a favourable prognosis. However, cases with recurrence have been reported and diagnosed in clinical practice. The mechanisms underlying PMC recurrence remain unknown. In this study, we aimed to identify the prognostic factors associated with PMC. MATERIALS AND METHODS: A total of 166 patients diagnosed with PMC were included. We compared the clinicopathological characteristics between patients with and without recurrence. The 21-gene assay was performed in 10 patients with recurrence and 20 TNM stage-matched patients without recurrence. Whole-exon sequencing was performed in 12 PMC primary tumours and four positive lymph nodes (LNs). RESULTS: Tumour size, lymph node status and TNM staging differed significantly between recurrent group and non-recurrent group. And the 21-gene recurrence scores did not differ significantly between recurrent group and its TNM stage-matched non-recurrent group. The most frequently mutated genes in the primary tumours of regional LN-positive PMCs were ADCY10 (3/6) and SHANK3 (3/6), and they more recurrently harboured gains of 15q23, 17q23.2 and 20p11.21, and loss of 21p11.2. And these alterations were not detected in primary tumours of regional LN-negative PMCs. CONCLUSION: TNM stage is an important prognostic factor in PMC. Although we revealed that regional LN-positive PMCs show increased occurrence of duplication variants at 15q23, 17q23.2 and 20p11.21, and deletion variants at 21p11.2. Further investigation, including multi-omics studies, are needed and may provide additional insights into the nature of PMC.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias da Mama , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Adulto , Prognóstico , Idoso , Metástase Linfática/genética , Mutação , Linfonodos/patologia
5.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779755

RESUMO

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Assuntos
Diabetes Mellitus Experimental , Canais Epiteliais de Sódio , Potássio na Dieta , Potássio , Animais , Diabetes Mellitus Experimental/metabolismo , Potássio/metabolismo , Potássio/urina , Masculino , Potássio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Camundongos Endogâmicos C57BL , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Hipopotassemia/metabolismo , Amilorida/farmacologia , Eliminação Renal/efeitos dos fármacos , Homeostase , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Glucosídeos/farmacologia , Estreptozocina , Compostos Benzidrílicos , Transportador 2 de Glucose-Sódio
6.
Breast Cancer Res Treat ; 206(1): 105-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704773

RESUMO

BACKGROUND: Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored. METHODS: To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood. RESULTS: Through RNA sequencing, we identified two distinct DCIS subgroups: "immune hot" and "immune cold". The "immune hot" subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with "immune cold" samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with "immune cold" cases generally showing lower levels of methylation. CONCLUSION: In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Adulto , Mutação , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Metilação de DNA , Adulto Jovem , Genômica/métodos , Prognóstico , Exoma/genética , Multiômica
7.
ChemSusChem ; : e202400827, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785150

RESUMO

Ozonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well-understood, which was in part due to the overlook of the electrochemistry-driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i. e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)-O2 coupled mechanism. In particular, rutile PbO2(101) with the "in-situ" generated OV exhibited superior EOP activities, outperforming the (111) and (110) surfaces. Finally, by catalytic volcano modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with previous experimental observations in terms of EOP overpotentials. This study provides the first volcano model to explain why rutile PbO2 is among the best metal oxide materials for EOP and provides new design guidelines for this rarely studied but industrially promising reaction.

8.
Chin J Traumatol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38734563

RESUMO

The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.

9.
J Hypertens ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38780161

RESUMO

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

10.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780388

RESUMO

Atom-interferometer gyroscopes have attracted much attention for their long-term stability and extremely low drift. For such high-precision instruments, self-calibration to achieve an absolute rotation measurement is critical. In this work, we propose and demonstrate the self-calibration of an atom-interferometer gyroscope. This calibration is realized by using the detuning of the laser frequency to control the atomic velocity, thus modulating the scale factor of the gyroscope. The modulation determines the order and the initial phase of the interference stripe, thus eliminating the ambiguity caused by the periodicity of the interferometric signal. This self-calibration method is validated through a measurement of the Earth's rotation rate, and a relative uncertainty of 162 ppm is achieved. Long-term stable and self-calibrated atom-interferometer gyroscopes have important applications in the fields of fundamental physics, geophysics, and long-time navigation.

11.
Cell Death Discov ; 10(1): 234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750055

RESUMO

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.

12.
Comb Chem High Throughput Screen ; 27(11): 1661-1675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504574

RESUMO

BACKGROUND AND PURPOSE: Emodin, a compound derived from rhubarb and various traditional Chinese medicines, exhibits a range of pharmacological actions, including antiinflammatory, antiviral, and anticancer properties. Nevertheless, its pharmacological impact on bladder cancer (BLCA) and the underlying mechanism are still unclear. This research aimed to analyze the pharmacological mechanisms of Emodin against BLCA using network pharmacology analysis and experimental verification. METHODS: Initially, network pharmacology was employed to identify core targets and associated pathways affected by Emodin in bladder cancer. Subsequently, the expression of key targets in normal bladder tissues and BLCA tissues was assessed by searching the GEPIA and HPA databases. The binding energy between Emodin and key targets was predicted using molecular docking. Furthermore, in vitro experiments were carried out to confirm the predictions made with network pharmacology. RESULTS: Our analysis identified 148 common genes targeted by Emodin and BLCA, with the top ten target genes including TP53, HSP90AA1, EGFR, MYC, CASP3, CDK1, PTPN11, EGF, ESR1, and TNF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated a significant correlation between Emodin and the PI3KAKT pathway in the context of BLCA. Molecular docking investigations revealed a strong affinity between Emodin and critical target proteins. In vitro experiments demonstrated that Emodin inhibits T24 proliferation, migration, and invasion while inducing cell apoptosis. The findings also indicated that Emodin reduces both PI3K and AKT protein and mRNA expression, suggesting that Emodin may mitigate BLCA by modulating the PI3K-AKT signaling pathway. CONCLUSION: This study integrates network pharmacology with in vitro experimentation to elucidate the potential mechanisms underlying the action of Emodin against BLCA. The results of this research enhance our understanding of the pharmacological mechanisms by which Emodin may be employed in treating BLCA.


Assuntos
Proliferação de Células , Emodina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias da Bexiga Urinária , Emodina/farmacologia , Emodina/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Movimento Celular/efeitos dos fármacos
13.
Open Med (Wars) ; 19(1): 20240898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463518

RESUMO

Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.

14.
Phytomedicine ; 128: 155363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493715

RESUMO

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Assuntos
Alcaloides , Galinhas , Coccidiose , Eimeria , Matrinas , Doenças das Aves Domésticas , Quinolizinas , Via de Sinalização Wnt , Animais , Quinolizinas/farmacologia , Alcaloides/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Eimeria/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Células-Tronco/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/parasitologia
15.
Gastric Cancer ; 27(3): 571-579, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457083

RESUMO

BACKGROUND: It remains unclear whether addition of docetaxel to the combination of a platinum and fluoropyrimidine could provide more clinical benefits than doublet chemotherapies in the perioperative treatment for locally advanced gastric/gastro-esophageal junction (LAG/GEJ) cancer in Asia. In this randomized, phase 2 study, we assessed the efficacy and safety of perioperative docetaxel plus oxaliplatin and S-1 (DOS) versus oxaliplatin plus S-1 (SOX) in LAG/GEJ adenocarcinoma patients. METHODS: Patients with cT3-4 Nany M0 G/GEJ adenocarcinoma were randomized (1:1) to receive 4 cycles of preoperative DOS or SOX followed by D2 gastrectomy and another 4 cycles of postoperative chemotherapy. The primary endpoint was major pathological response (MPR). RESULTS: From Aug, 2015 to Dec, 2019,154 patients were enrolled and 147 patients included in final analysis, with a median age of 60 (26-73) years. DOS resulted in significantly higher MPR (25.4 vs. 11.8%, P = 0.04). R0 resection rate, the 3-year PFS and 3-year OS rates were 78.9 vs. 61.8% (P = 0.02), 52.3 vs. 35% (HR 0.667, 95% CI: 0.432-1.029, Log rank P = 0.07) and 57.5 vs. 49.2% (HR 0.685, 95% CI: 0.429-1.095, Log rank P = 0.11) in the DOS and SOX groups, respectively. Patients who acquired MPR experienced significantly better survival. DOS had similar tolerance to SOX. CONCLUSIONS: Perioperative DOS improved MPR significantly and tended to produce longer PFS compared to SOX in LAG/GEJ cancer in Asia, and might be considered as a preferred option for perioperative chemotherapy and worth further investigation.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Pessoa de Meia-Idade , Idoso , Docetaxel/uso terapêutico , Oxaliplatina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Junção Esofagogástrica/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia
16.
Front Pharmacol ; 15: 1349069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384297

RESUMO

The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i. Accumulating evidence highlights the diverse mechanisms including glucose-dependent and independent pathways, and revealing their potential cardiorenal protection in diabetic and non-diabetic cardiorenal disease. This review provides critical insights into the cardiorenal protective effects of SGLT2i, GLP-1RAs, and DPP-4i and underscores the importance of these medications in mitigating the progression of cardiovascular and renal complications, and their broader clinical implications beyond glycemic management.

17.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315453

RESUMO

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo
18.
Dis Esophagus ; 37(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455547

RESUMO

This study was completed to evaluate the relationship between tumor length and the prognosis of patients with pathological stage IA-IC esophageal adenocarcinoma (EAC). Patients were identified from the Surveillance, Epidemiology, and End Results Program database (United States, 2006-2015). X-tile software and ROC analysis were mainly used to explore the best threshold of tumor length for dividing patients into different groups, and then propensity score matching (PSM) was used to balance other variables between groups. The primary outcome assessed was overall survival (OS). A total of 762 patients were identified, and 500 patients were left after PSM. Twenty millimeters were used as the threshold of tumor length. Patients with longer tumor lengths showed worse OS (median: 93 vs. 128 months; P = 0.006). Multivariable Cox regression analysis showed that longer tumor length was an independent risk factor (hazard ratio 1.512, 95% confidence interval, 1.158-1.974, P = 0.002). Tumor length has an impact on patients with pathological stage IA-IC EAC who undergo surgery alone. The prognostic value of the pathological stage group may be improved after combining it with tumor length and age.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Estados Unidos , Prognóstico , Estadiamento de Neoplasias , Adenocarcinoma/patologia , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Pontuação de Propensão
19.
J Contam Hydrol ; 259: 104260, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922725

RESUMO

Contamination from light non-aqueous phase liquids (LNAPLs) and their derivatives, arising from exploration, production, and transportation, has become a prevalent pollution source. This poses direct threats to human health. However, conventional investigative methods face limitations when applied to studying the extent and migration process of LNAPL contamination, as well as the redistribution of LNAPL during groundwater level fluctuations. Conventional methods lack the ability to rapidly, efficiently, and in real-time acquire information about contaminated areas. Therefore, this study utilizes time-lapse electrical resistivity tomography to investigate the migration mechanism of LNAPL under unsaturated conditions, constant groundwater levels, and groundwater level reductions. A relationship between resistivity and water and oil contents was established and used for inverse calculation of LNAPL content via resistivity inversion. Time-lapse electrical resistivity tomography revealed LNAPL migration in a "concave" shape across three conditions. Groundwater presence notably slowed migration, hindering downward movement and leading to a floating oil band. A robust mathematical model was established to derive the relationship between resistivity and water and oil contents. Finally, LNAPL distribution under unsaturated conditions was inversely obtained from resistivity data, showing highest content at the top leak point, obstructed area, and bottom of soil column. Consequently, time-lapse electrical resistivity tomography demonstrates a notable capacity to characterize the LNAPL migration process. This technique constitutes an effective geophysical method for monitoring and describing the characteristics of LNAPL migration. Its significance lies in enhancing our understanding of remediation for LNAPL-induced groundwater and land contamination.


Assuntos
Poluição Ambiental , Água Subterrânea , Humanos , Imagem com Lapso de Tempo , Tomografia , Água
20.
J Mater Chem B ; 12(1): 122-130, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37997769

RESUMO

With the urgent need for antiviral agents, antiviral materials with high biocompatibility and antiviral effects have attracted a lot of attention. In this study, gallic acid, a natural polyphenolic compound, was transformed into biocompatible graphene quantum dots (GAGQDs) which exhibit enhanced antiviral activity against pseudorabies virus (PRV). The as-prepared GAGQDs inhibit PRV proliferation with a 104-fold reduction in viral titers. Investigation of the antiviral mechanism revealed that GAGQDs inhibit the adsorption, invasion and replication of PRV infection. Treatment with GAGQDs regulates the expression levels of interferon-related antiviral proteins, including mitochondrial antiviral-signaling protein (MAVS), signal transducer and activator of transcription 1 (STAT1) and 2',5'-oligoadenylate synthetase 1 (OAS1), suggesting that GAGQDs can stimulate innate antiviral immune responses, resulting in enhanced antiviral effects. More importantly, GAGQD treatments alleviate clinical symptoms and reduce mortality in PRV-infected mice. Our results reveal the enhanced therapeutic effects of GAGQDs against PRV infection in vitro and in vivo, suggesting the potential of GAGQDs as a promising novel antiviral agent.


Assuntos
Grafite , Herpesvirus Suídeo 1 , Pseudorraiva , Pontos Quânticos , Camundongos , Animais , Herpesvirus Suídeo 1/fisiologia , Interferons/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Grafite/farmacologia , Grafite/uso terapêutico , Pseudorraiva/tratamento farmacológico , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...