Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 11(1): 327, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396629

RESUMO

Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.

2.
Nature ; 612(7939): 252-258, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385531

RESUMO

Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14-17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.


Assuntos
Óxidos , Semicondutores , Olho , Micro-Ondas
3.
Light Sci Appl ; 11(1): 240, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906235

RESUMO

Acousto-optic devices that use radio frequency mechanical waves to manipulate light are critical components in many optical systems. Here, the researchers bring acousto-optic devices on-chip and make them more efficient for integrated photonic circuits.

4.
Nature ; 599(7886): 587-593, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819680

RESUMO

Efficient frequency shifting and beam splitting are important for a wide range of applications, including atomic physics1,2, microwave photonics3-6, optical communication7,8 and photonic quantum computing9-14. However, realizing gigahertz-scale frequency shifts with high efficiency, low loss and tunability-in particular using a miniature and scalable device-is challenging because it requires efficient and controllable nonlinear processes. Existing approaches based on acousto-optics6,15-17, all-optical wave mixing10,13,18-22 and electro-optics23-27 are either limited to low efficiencies or frequencies, or are bulky. Furthermore, most approaches are not bi-directional, which renders them unsuitable for frequency beam splitters. Here we demonstrate electro-optic frequency shifters that are controlled using only continuous and single-tone microwaves. This is accomplished by engineering the density of states of, and coupling between, optical modes in ultralow-loss waveguides and resonators in lithium niobate nanophotonics28. Our devices, consisting of two coupled ring-resonators, provide frequency shifts as high as 28 gigahertz with an on-chip conversion efficiency of approximately 90 per cent. Importantly, the devices can be reconfigured as tunable frequency-domain beam splitters. We also demonstrate a non-blocking and efficient swap of information between two frequency channels with one of the devices. Finally, we propose and demonstrate a scheme for cascaded frequency shifting that allows shifts of 119.2 gigahertz using a 29.8 gigahertz continuous and single-tone microwave signal. Our devices could become building blocks for future high-speed and large-scale classical information processors7,29 as well as emerging frequency-domain photonic quantum computers9,11,14.

5.
Opt Express ; 28(16): 23728-23738, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752365

RESUMO

Electrically driven acousto-optic devices that provide beam deflection and optical frequency shifting have broad applications from pulse synthesis to heterodyne detection. Commercially available acousto-optic modulators are based on bulk materials and consume Watts of radio frequency power. Here, we demonstrate an integrated 3-GHz acousto-optic frequency shifter on thin-film lithium niobate, featuring a carrier suppression over 30 dB. Further, we demonstrate a gigahertz-spaced optical frequency comb featuring more than 200 lines over a 0.6-THz optical bandwidth by recirculating the light in an active frequency shifting loop. Our integrated acousto-optic platform leads to the development of on-chip optical routing, isolation, and microwave signal processing.

6.
Phys Rev Lett ; 124(21): 217403, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530686

RESUMO

The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.

7.
Nat Commun ; 11(1): 193, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924759

RESUMO

Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems.

8.
Lab Chip ; 18(23): 3539-3549, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406244

RESUMO

Parylene-C is a popular polymer material in biomedical applications, with excellent physicochemical properties and microfabrication capability. Like many aromatic polymers, parylene-C also has autofluorescence, which was usually taken as a negative background noise in biomedical detection studies. However, the fluorescence intensity of thin-film (<1 µm) parylene-C was relatively weak, which may be a big limitation in visualization. In this work, we reported a simple annealing method to significantly enhance the fluorescence and achieve sufficient intensity as a visual marker. We studied the behaviors and mechanisms of the enhanced parylene-C fluorescence, then verified the feasibility and reliability of parylene-C for preparing fluorescent pipettes in targeted neuronal electrophysiology, where fluorescent guidance was strongly needed. The powerful parylene-C fabrication technique enables a precisely-controlled conformal coating along with a mass production capability, which further resulted in high-quality electrophysiological recordings of both cultured hippocampal neurons and acute hippocampal brain slices. Moreover, the enhanced parylene-C fluorescence can also be applied in more general biological operations, such as designable fluorescent micro-patterns for visualization in broader biomedical fields.


Assuntos
Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Polímeros/metabolismo , Xilenos/metabolismo , Animais , Fenômenos Eletrofisiológicos , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos
9.
Science ; 358(6361): 344-347, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051375

RESUMO

The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

10.
Adv Mater ; 25(39): 5616-20, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24303524

RESUMO

A new label-free sensing mechanism is demonstrated experimentally by monitoring the whispering-gallery mode broadening in microcavities. It is immune to both noise from the probe laser and environmental disturbances, and is able to remove the strict requirement for ultra-high-Q mode cavities for sensitive nanoparticle detection. This ability to sense nanoscale objects and biological analytes is particularly crucial for wide applications.


Assuntos
Lentivirus/isolamento & purificação , Microtecnologia/métodos , Nanopartículas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...