Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37659033

RESUMO

Excessive inflammation and autophagy defect of chondrocytes play important roles in the pathological process of osteoarthritis (OA). The present study aimed to clarify the roles of small novel rich in cartilage (SNORC) in these pathological changes of chondrocytes in OA. Bioinformatics analysis of GEO dataset GSE207881 displayed that SNORC was a potential biomarker for OA. As confirmed by quantitative real-time PCR, immunohistochemical staining and western blotting, SNORC was significantly up-regulated in cartilage of OA rat model and interleukin (IL)-1ß-stimulated primary rat articular chondrocytes in contrast to their corresponding normal control. Knocking down SNORC in IL-1ß-induced chondrocytes obviously suppressed the production of nitric oxide (NO), IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) to alleviate inflammation, and reduced the protein levels of a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) and matrix metallopeptidase (MMP)13 and elevated collagen type 2 alpha 1 (COL2A1) level to improve matrix degradation. Down-regulation of SNORC increased Beclin1 expression and LC3II/LC3I ratio, but suppressed p62 expression to restore impaired autophagy in IL-1ß-induced chondrocytes. Moreover, down-regulating SNORC mitigated mitochondrial dysfunction and apoptosis in IL-1ß-stimulated chondrocytes. Mechanically, SNORC simultaneously activated the phosphatidylinositol-3-kinase/serine threonine kinase (PI3K/AKT) and c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in the IL-1ß-induced chondrocyte, while re-activating the PI3K and JNK signals abolished the suppressive effect of down-regulating SNORC on IL-1ß-induced chondrocyte damage. In a word, SNORC knockdown alleviates inflammation, matrix degradation, autophagy defect and excessive apoptosis of chondrocytes during OA development via suppressing the PI3K and JNK signaling pathway.

2.
Int J Rheum Dis ; 25(10): 1152-1163, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906742

RESUMO

AIM: Gouty arthritis (GA) is a type of self-limiting inflammatory arthritis caused by deposition of monosodium urate (MSU). This study aimed to analyze the expression variation of messenger RNAs (mRNAs) in GA patients and investigated the role of mRNAs in GA pathogenesis. METHODS: Five patients with acute GA (AGA), 5 with non-acute GA (NAGA), and 5 healthy controls (HC) were recruited to examine differential mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) and explore whether mRNA is involved in the pathogenesis of AGA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to study the biological functions of differentially expressed mRNA and the relationship between genes and signal pathways. RESULTS: Compared with HC, the AGA group had 1456 differentially expressed mRNAs, while the NAGA group had 437 differentially expressed mRNAs and compared with the NAGA group, 115 differentially expressed mRNAs were found in the AGA group. GO analysis showed that the differentially expressed mRNA in the AGA group was mainly enriched in processes related to leukocyte activation and immune response, while KEGG analysis showed that "Staphylococcus aureus infection" and "Cytokine-cytokine receptor interaction" are enriched in the up-regulated mRNAs in the AGA group. CONCLUSION: This study identified genes and pathways that are differentially expressed during the onset of AGA, which might reveal part of the pathogenesis of the disease and provide clues to explaining the severe pain associated with disease onset and the rapid development of inflammatory response that subsides by itself.


Assuntos
Artrite Gotosa , RNA Longo não Codificante , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Citocinas/metabolismo , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...