Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 29(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38240082

RESUMO

The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS­CoV­2; known as coronavirus infection­2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS­CoV­2.


Assuntos
COVID-19 , Herpesviridae , Humanos , Carcinogênese , Herpesviridae/metabolismo , Janus Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo
2.
Int J Clin Exp Pathol ; 11(1): 158-168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938097

RESUMO

We have previously reported that the 3p21 tumor suppressor BLU regulates cell cycle by blocking JNK/MAPK signaling. Another member of the MAPK family, extracellular signal response kinase (ERK), is induced by the RAS-RAF-MEK-ERK pathway and is targeted in anticancer therapy. The effects of BLU on tumor growth were evaluated by measuring the size of nasopharyngeal carcinoma (NPC) xenografted tumors intra-tumorally injected with BLU adenovirus 5 (BLU Ad5) and the viability of NPC cells transferred with BLU. Tumor size was correlated with downregulation of the ERK pathway by BLU. Phosphorylation of ERK and Elk reporter activities were assayed. The regulated cyclins D1 and B1 were measured by CCND1 and CCNB1 gene promoter activity by co-transfection of BLU, RAS V12G, together with BLU+RAS V12G, pCD316+RAS V12G. The cell cycle phase distribution was determined by FACS-based DNA content assay. The data showed that growth of the xenografted tumor was inhibited and viability of HONE-1 cells was reduced by recombinant BLU. BLU down-regulated ERK signaling by reducing protein substrate phosphorylation, inhibiting Elk reporter activity, and blocking promoter activities of the CCND1 gene and reduced cyclins D1 expression to arrest the cell cycle at the G1 phase. The population of G2/M cells was also remarkably decreased. HRAS V12G activated ERK and cyclin D1 and B1 promoters, and the effects were antagonized by BLU. Taken together, our results suggested that BLU inhibited ERK signaling, downregulated cyclins D1 and B1, and prevented cell cycle progression through interfering with HRAS V12G signaling to exert tumor suppression.

3.
J Thorac Dis ; 8(9): 2485-2494, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27747000

RESUMO

BACKGROUND: Recent evidence suggests that a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has anti-fibrotic effect. However, the exact mechanism of its anti-fibrotic potential remains is unclear. In this study, we investigated the molecular mechanism of SAHA in attenuating pulmonary fibrosis by regulating stability of Smad7 in paraquat (PQ)-induced lung fibrosis animal model and cultured pulmonary fibroblasts. METHODS: Rats with paraquat-induced lung fibrosis were fed with a SAHA solution (15 mg/kg) by gastric gavage. Human pulmonary fibroblasts (HFL1) pre-treated with TGF-ß1 (5 ng/mL) were treated with SAHA (5 µM). RESULTS: SAHA (histone deacetylase inhibitor, HDACi) suppressed PQ-induced lung fibrosis in rats by stabilizing Smad7 level, thus attenuating Smad3 activity, resulting in the inhibition of fibroblast differentiation and collagen expression. In vitro study showed that SAHA suppressed TGF-ß1-induced fibroblast differentiation into myofibroblasts. SAHA exerted its antifibrotic effect through preventing Smad7 from deacetylation most maybe by inhibiting TGF-ß1-induced HDAC1 activity. CONCLUSIONS: SAHA repressed PQ-induced lung fibrosis via preventing Smad7 from deacetylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...