Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39226170

RESUMO

Aims: Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H2S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. Methods & Results: First, we observed a downregulation of CSE/H2S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness in vivo and VSMC senescence and stiffness in vitro. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H2S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H2S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H2S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. Innovation: Our findings highlight the protective role of CSE/H2S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. Conclusion: Endogenous CSE/H2S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.

2.
Plant J ; 111(3): 683-697, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608142

RESUMO

Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.


Assuntos
Manihot , Melatonina , Xanthomonas , Resistência à Doença/genética , Etilenos/metabolismo , Manihot/genética , Manihot/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
3.
Front Plant Sci ; 13: 1053669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684718

RESUMO

Introduction: Single-cell transcriptome sequencing (ScRNA-seq) has emerged as an effective method for examining cell differentiation and development. In non-model plants, it hasn't been employed very much, especially in sink organs that are abundant in secondary metabolites. Results: In this study, we sequenced the single-cell transcriptomes at two developmental phases of cassava tuberous roots using the technology known as 10x Genomics (S1, S2). In total, 14,566 cells were grouped into 15 different cell types, primarily based on the marker genes of model plants known to exist. In the pseudotime study, the cell differentiation trajectory was defined, and the difference in gene expression between the two stages on the pseudotime axis was compared. The differentiation process of the vascular tissue and cerebral tissue was identified by the trajectory. We discovered the rare cell type known as the casparian strip via the use of up-regulated genes and pseudotime analysis, and we explained how it differentiates from endodermis. The successful creation of a protoplast isolation technique for organs rich in starch was also described in our study. Discussion: Together, we created the first high-resolution single-cell transcriptome atlas of cassava tuberous roots, which made significant advancements in our understanding of how these roots differentiate and develop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA