Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(3): e0152521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031697

RESUMO

Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 µm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 µm > 250-53 µm > 53 µm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 µm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Zea mays/metabolismo , Biomassa , Carbono/química , Esterco/microbiologia , Nitrogênio/química , Tamanho da Partícula , Fósforo/química , Fósforo/metabolismo , Potássio/química , Potássio/metabolismo , Solo/química , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento
2.
Sci Rep ; 5: 10791, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26039186

RESUMO

We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0-20 cm depth) between 1986-2012. By employing natural (13)C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1-6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4-5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production.


Assuntos
Sequestro de Carbono , Esterco , Solo/química , Zea mays , Agricultura , Biomassa , Produtos Agrícolas , Fertilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...