Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2185-2193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681383

RESUMO

Rising atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are the main global change drivers. Soil ectoenzymes play an important role in maintaining soil ecosystem services. Exploring the responses of soil ectoenzymes to elevated CO2 and O3 concentrations is important for combating global climate change. In this study, we simulated elevated CO2 concentrations (+200 µmol·mol-1, eCO2), elevated O3 concentrations (0.04 µmol·mol-1, eO3), and their combination (eCO2+eO3) in open-top chambers (OTCs), and investigated the responses of rhizospheric soil ectoenzyme activities. The results showed that eCO2 significantly increased the ß-D-Glucosidase (ßG) activity by 73.0%, and decreased that of polyphenol oxidase (PHO), peroxidase (PEO), and acid phosphatase (AP) by 48.9%, 46.6% and 72.9% respectively, but did not affect that of cellulose hydrolase (CBH) and ß-N-Acetylglucosaminidase (NAG). eO3 significantly reduced the activities of CBH and AP by 34.2% and 30.4%, respectively. The activities of PHO and AP were reduced by 87.3% and 32.3% under the eCO2+eO3 compared with the control, respectively. Results of the principal coordinate analysis, permutation multivariate analysis of variance and redundancy analysis showed that both elevated CO2 and O3 significantly affected soil ectoenzyme activities, with stronger effects of elevated CO2 than elevated O3. Root nitrogen content, root carbon to nitrogen ratio, soil microbial biomass carbon and nitrate nitrogen were the main drivers of soil ectoenzyme activities under elevated CO2 and O3. Elevated O3 could partially neutralize the effects of elevated CO2 on soil ectoenzyme activities. In conclusion, elevated CO2 and O3 restrained the activities of most soil ectoenzyme, suggesting that climate change would threat soil ecosystem services and functions in the agroecosystem.


Assuntos
Oryza , Ozônio , Dióxido de Carbono , Ecossistema , Catecol Oxidase , Nitrogênio , Solo
2.
Ying Yong Sheng Tai Xue Bao ; 34(1): 235-241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799399

RESUMO

To understand the effects of common afforestation tree species on soil microbial community in subtropical forests, seven different tree species were selected as the research object, including Pinus massoniana, Mytilaria laosensis, Liquidambar formosana, Ilex chinensis, Michelia macclurei, Quercus acutissima and Betula luminifera. Based on 16S rRNA high-throughput sequencing and real-time quantitative PCR techniques, we explored the effects of different tree species on soil bacterial community composition, diversity and microbial functional guilds. The results showed that Acidobacteria, Proteobacteria, and Actinobacteria were the dominant bacterial phyla, and that there was no significant difference in bacterial diversity or richness index among different tree species. Results of redundancy analysis suggested that soil bulk density, soil C/N, litter nitrogen content, and litter C/N were the predominant factors determining soil bacterial community composition. The afforestation tree species had significant effects on functional gene abundances of ammonia oxidizing archaea, ammonia oxidizing bacteria and complete ammonia oxidation. Comammox were dominant in abundance. Ammonia oxidizing archaea amoA gene was the only type whose abundance showed significant correlation with soil nitrate content, suggesting that ammonia oxidizing archaea could play a dominant role in the autotrophic nitrification in the acidic subtropical forest soils. The afforestation tree species had significant effects on functional gene abundances of ammonia oxidizing microorganisms. Results of correlation analysis showed that litter nitrogen content was the driving factor for the abundance of ammonia oxidizing microorganisms. Our study provided strong evidence that the responses of soil microbial functional guilds to tree species were more sensitive than bacterial community composition. Future studies should explore the mechanisms of tree plantations on forest ecosystem functioning from the perspective of microbial functional guilds.


Assuntos
Microbiota , Árvores , Solo , Amônia , RNA Ribossômico 16S , Oxirredução , Bactérias/genética , Archaea , Florestas , Nitrificação , Nitrogênio , Microbiologia do Solo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...