Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 74(5): 1038-1052, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248168

RESUMO

BACKGROUND & AIMS: Lactate has recently been reported to accumulate in the livers of patients progressing from simple steatosis to non-alcoholic steatohepatitis (NASH). However, the underlying mechanism(s) of lactate accumulation and the role of lactate in the progression of non-alcoholic fatty liver disease (NAFLD) are essentially unknown. METHODS: We compared the acetylome in liver samples taken from healthy individuals, patients with simple steatosis and patients with NASH to identify potential targets of acetylation with a role in lactate metabolism. Interactions between the acetylated target and acetyltransferases were measured in multiple cell lines. An acetyltransferase inhibitor was injected into high-fat diet (HFD)-fed mice to determine the role of lactate on NAFLD progression in vivo. RESULTS: Hyperacetylation of lactate dehydrogenase B (LDHB) was found to be associated with lactate accumulation in NAFL and NASH livers in humans and mice. P300/CBP-associated factor (PCAF)-mediated acetylation of LDHB K82 was found to significantly decrease LDHB activity and impair hepatic lactate clearance, resulting in lactate accumulation. Acetylated LDHB induced lactate accumulation which exacerbated lipid deposition and inflammatory responses by activating histone hyperacetylation in HFD-induced NASH. The administration of embelin, a PCAF inhibitor, and the generation of an acetylation-deficient mutant of LDHB ameliorated NASH. CONCLUSION: PCAF-dependent LDHB acetylation plays a key role in hepatic lipid accumulation and inflammatory responses by impairing lactate clearance; this process might be a potential therapeutic target for the treatment of NASH. LAY SUMMARY: Lactate is known to accumulate in the livers of patients during the progression of non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanism(s) of this accumulation and its importance in disease progression are unknown. Herein, we show that the acetylation of an enzyme involved in lactate metabolism leads to impaired lactate clearance and exacerbates NAFLD progression.


Assuntos
Acetiltransferases , Eliminação Hepatobiliar/fisiologia , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Distribuição Tecidual/fisiologia , Acetilação , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/metabolismo , Animais , Linhagem Celular , Progressão da Doença , Humanos , Isoenzimas/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo
2.
J Anim Sci Biotechnol ; 11: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140225

RESUMO

BACKGROUND: The effects of dietary garcinol on diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets were investigated. METHOD: One hundred forty four weaned piglets (Duroc × Yorkshire × Landrace) from 16 pens (9 piglets per pen) were randomly divided into four treatment groups: controls (CON) or those supplemented with 200 mg/kg (LOW), 400 mg/kg (MID), or 600 mg/kg (HIGH) diet garcinol. After 14-day trial, three piglets per pen were chosen to collect plasma, intestinal tissue and colonic digesta samples. RESULTS: We demonstrated for the first time that garcinol promoted growth performance, as increased average daily feed intake (ADFI) and decreased feed/gain ratio (F/G); and reduced diarrhea incidence (P < 0.05); and strengthened antioxidant capacity, as an increased antioxidative index (P < 0.05). Additionally, garcinol ameliorated intestinal barrier dysfunction, as an increased villus height to crypt depth ratio, increased zonula occludens protein 1 (ZO-1), occludin and claudin-1 expression in the jejunum and ileum (P < 0.05), and decreased intestinal permeability (P < 0.05); and reduced inflammation, as decreased cytokine interleukin (IL)-6, IL-10, IL-1ß and tumor necrosis factor-α (TNF-α) levels in the mucosa of the jejunum and ileum, and NF-κB p65 translocation (P < 0.05). Moreover, garcinol inhibited the growth of most harmful bacteria in the gut, especially Escherichia coli, and increased the growth of the beneficial bacteria Lactobacillus. CONCLUSION: This work provides a fundamental basis for the future development of garcinol-functional food use for improving diarrhea and intestinal barrier function in weaned piglets and for understanding the biological effects of garcinol and its potential as a functional feed additive.

3.
Meat Sci ; 161: 107998, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31707156

RESUMO

The objective of this study was to evaluate the effects of dietary garcinol (0, 200, 400 and 600 mg/kg) on the growth performance, meat quality, postmortem glycolysis and antioxidative capacity of finishing pigs. Dietary garcinol increased pigs' average daily gain, pH 24h, a* and myoglobin content of longissimus dorsi (LM) (P < 0.05), and decreased feed/gain ratio, the L*24h, glycolytic potential, drip loss, shear force, and backfat depth (P < 0.05). The glutathione peroxidase (GPx), catalase (CAT) and total antioxidative capacity (T-AOC) were significantly increased by garcinol (P < 0.05), while the activity of lactate dehydrogenase (LDH) and malonaldehyde (MDA) content were decreased (P < 0.05). Moreover, garcinol decreased the p300/CBP-associated factor (PCAF) activity, the acetylation level and activities of glycolysis enzymes phosphoglycerate kinase 1 (PGK1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 (PFKFB3) (P < 0.05). The results of this study showed that garcinol decreased postmortem glycolysis, and this may be due to the mechanism of decreasing glycolytic enzyme acetylation induced by PCAF. The present study indicates that garcinol can facilitate the growth performance of pigs and improve pork quality by changing postmortem glycolysis and antioxidative capacity.


Assuntos
Ração Animal/análise , Qualidade dos Alimentos , Glicólise/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Carne de Porco/análise , Terpenos/farmacologia , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Suínos/crescimento & desenvolvimento
4.
J Anim Sci ; 97(11): 4557-4566, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504564

RESUMO

The present study was conducted to evaluate the effects of dietary garcinol supplementation during late gestation (from the 90th day of pregnancy; day 90) and lactation on the acid-base balance of the umbilical cord blood and performance of sows and piglets. Sixty sows (Duroc × Yorkshire × Landrace; second- or third-parity; n = 20) were randomly divided into 3 gestation (day 90 of pregnancy) or lactation treatments, control diet (CON; basal diet), basal diet with 200 mg garcinol, and basal diet with 600 mg garcinol per kg of feed. The body weight (BW); backfat thickness and litter size of the sows; and birth weight, weaning weight, and mortality of piglets were recorded. Sows' blood and piglets' umbilical cord blood were collected for the measurements of hematological parameters and antioxidative and immune indexes, and acid-base balance parameters, respectively. The colostrum and milk and fecal samples of the sows were also collected for analysis of milk composition and apparent total tract nutrient digestibility. Garcinol had no effect on the BW and backfat thickness of the sows but significantly increased the birth weight and weaning weight of piglets (P < 0.05) and decreased the mortality (P < 0.05). Moreover, the white blood cell counts and neutrophil count, mean cell hemoglobin, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity in the plasma of the sows were increased more significantly (P < 0.05) in the garcinol groups than that in the CON group, whereas the malondialdehyde (MDA) content was decreased (P < 0.05). The garcinol treatment significantly increased the pH, HCO3- and base excess values (P < 0.05), whereas it decreased the pCO2 and lactate content (P < 0.05) in the umbilical blood. Dry matter (DM), ash, and ether extract in the colostrum were similar between groups (P > 0.05), whereas the garcinol significantly increased the crude protein (CP) in the milk. In addition, the content of immunoglobulin A (IgA) and immunoglobulin G (IgG) in the plasma of piglets and in colostrum and milk of sows were increased more significantly (P < 0.05) in the garcinol groups than that in the CON group. The apparent total tract nutrient digestibility was similar between treatments. Collectively, this study indicates that sows fed with garcinol in late gestation and lactation showed improved maternal health and antioxidative status, milk protein content, acid-base balance in the umbilical cord blood, and growth performance in piglets, showing promise in natural plant extract nutrition for sows.


Assuntos
Suplementos Nutricionais/análise , Leite/química , Suínos/fisiologia , Terpenos/administração & dosagem , Equilíbrio Ácido-Base/efeitos dos fármacos , Ração Animal/análise , Animais , Colostro/química , Dieta/veterinária , Feminino , Sangue Fetal/efeitos dos fármacos , Imunoglobulina A/sangue , Lactação/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Paridade , Gravidez , Distribuição Aleatória , Suínos/sangue , Suínos/imunologia , Desmame
5.
Front Microbiol ; 10: 1083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156592

RESUMO

Exposure to gaseous ammonia, even at low levels, can be harmful to pigs and human health. However, less is known about the effects of sustained exposure to gaseous ammonia on nasal microbiota colonization in growing pigs. A total of 120 Duroc×Landrace×Yorkshire pigs were housed in 24 separate chambers and continuously exposed to gaseous ammonia at 0,5, 10, 15, 20, and 25 ppm (four groups per exposure level) for 4 weeks. Then, we used high-throughput sequencing to perform 16S rRNA gene analysis in nasal swabs samples from 72 pigs (n = 12). The results of the nasal microbiota analysis showed that an increase in ammonia concentration, especially at 20 and 25 ppm, decreased the alpha diversity and relative abundance of nasal microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi were the most abundant phyla. In addition, the relative abundances of 24 microbial genera significantly changed as the ammonia level increased. Four microbial genera (Pseudomonas, Lactobacillus, Prevotella, and Bacteroides) were significantly decreased at 25 ppm, while only two genera (Moraxella and Streptococcus) were increased at 25 ppm. PICRUSt analyses showed that the relative abundances of the nasal microbiota involved in cell motility, signal transduction, the nervous system, environmental adaptation, and energy and carbohydrate metabolism were significantly decreased, while genes involved in the immune system, endocrine system, circulatory system, immune system diseases and metabolism of vitamins, lipid, and amino acids were increased with increased ammonia levels. The results of in vivo tests showed that an increase in ammonia levels, especially an ammonia level of 25 ppm, caused respiratory tract injury and increase the number of Moraxella and Streptococcus species, while simultaneously decreasing respiratory immunity and growth performance, consistent with the increased presence of harmful bacteria identified by nasal microbiota analysis. Herein, this study also indicted that the threshold concentration of ammonia in pig farming is 20 ppm.

6.
Anim Nutr ; 4(3): 329-337, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30175263

RESUMO

The liver is the most essential organ for the metabolism of ammonia, in where most of ammonia is removed by urea and glutamine synthesis. Regulated by leucine, glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to ammonia. To determine the mechanism of leucine regulating GDH, pigs weighing 20 ± 1 kg were infused for 80 min with ammonium chloride or alanine in the presence or absence of leucine. Primary pig hepatocytes were incubated with or without leucine. In the in vivo experiments with either ammonium or alanine as the nitrogen source, addition of leucine significantly inhibited ureagenesis and promoted the production of glutamate and glutamine in the perfused pig liver (P < 0.05). Similarly, leucine stimulated GDH activity and inhibited sirtuin4 (SIRT4) gene expression (P < 0.01). Leucine could also activate mammalian target of rapamycin complex 1 (mTORC1) signaling (P < 0.05), as evidenced by the increased phosphorylation levels of ribosomal protein S6 kinase 1 (S6K1) and ribosomal protein S6 (S6). Interestingly, the leucine-induced mTORC1 pathway activation suitably correlated with increased GDH activity and decreased expression of SIRT4. Similar results were observed in primary cultured hepatocytes. Notably, leucine exerted no significant change in GDH activity in SIRT4-deficient hepatocytes (P > 0.05), while mTORC1 signaling was activated. Leucine exerted no significant changes in both GDH activity and SIRT4 gene expression in rapamycin treated hepatocytes (P > 0.05). In conclusion, L-leucine increases GDH activity and stimulates glutamate synthesis from different nitrogen sources by regulating mTORC1/SIRT4 pathway in the liver of pigs.

7.
J Cell Mol Med ; 22(12): 5787-5800, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216660

RESUMO

The P300/CBP-associating factor (PCAF), a histone acetyltransferase, is involved in metabolic and pathogenic diseases, particularly of the liver. The effects of PCAF on fine-tuning liver diseases are extremely complex and vary according to different pathological conditions. This enzyme has dichotomous functions, depending on differently modified sites, which regulate the activities of various enzymes, metabolic functions, and gene expression. Here, we summarize the most recent findings on the functions and targets of PCAF in various metabolic and immunological processes in the liver and review these new discoveries and models of PCAF biology in three areas: hepatic metabolic syndrome, inflammatory disease, and cancer. Finally, we discuss the potential implications of these findings for therapeutic interventions in liver diseases.


Assuntos
Inflamação/metabolismo , Síndrome Metabólica/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Fígado/lesões , Fígado/patologia , Síndrome Metabólica/patologia , Neoplasias/patologia
8.
Am J Physiol Endocrinol Metab ; 315(4): E496-E510, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763372

RESUMO

Hepatic metabolic syndrome is associated with inflammation, as inflammation stimulates the reprogramming of nutrient metabolism and hepatic mitochondria-generated acetyl-CoA, but how acetyl-CoA affects the reprogramming of nutrient metabolism, especially glucose and fatty acids, in the condition of inflammation is still unclear. Here, we used an acute inflammation model in which pigs were injected with lipopolysaccharide (LPS) and found that hepatic glycolysis and fatty acid oxidation are both promoted. Acetyl-proteome profiling of LPS-infected pigs liver showed that inflammatory stress exacerbates the acetylation of mitochondrial proteins. Both mitochondrial glutamate oxaloacetate transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2) were acetylated, and the malate-aspartate shuttle (MAS) activity was stimulated to maintain glycolysis. With the use of 13C-carbon tracing in vitro, acetyl-CoA was found to be mainly supplied by lipid-derived fatty acid oxidation rather than glucose-derived pyruvate oxidative decarboxylation, while glucose was mainly used for lactate production in response to inflammatory stress. The results of the mitochondrial experiment showed that acetyl-CoA directly increases MDH2 and, in turn, the GOT2 acetylation level affects MAS activity. Treatment with palmitate in primary hepatocytes from LPS-injected pigs increased the hepatic production of acetyl-CoA, pyruvate, and lactate; MAS activity; and hepatic MDH2 and GOT2 hyperacetylation, while the deficiency of long-chain acetyl-CoA dehydrogenase resulted in the stabilization of these parameters. These observations suggest that acetyl-CoA produced by fatty acid oxidation promotes MAS activity and glycolysis via nonenzymatic acetylation during the inflammatory stress response.


Assuntos
Acetilcoenzima A/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Inflamação/metabolismo , Fígado/metabolismo , Malato Desidrogenase/metabolismo , Mitocôndrias Hepáticas/metabolismo , Acetilação , Animais , Ácido Aspártico/metabolismo , Isótopos de Carbono , Inflamação/induzido quimicamente , Ácido Láctico/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Malatos/metabolismo , Oxirredução/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ácido Pirúvico/metabolismo , Estresse Fisiológico , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...