Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(10): e2200972, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913681

RESUMO

Polymer blending is an efficient way to obtain extraordinary polymeric materials. However, once permanently cross-linked thermosets are involved in blending, there are challenges in designing and optimizing the structures and interfacial compatibility of blends. Vitrimer with dynamic covalent polymer networks provides an innovative opportunity for blending thermoplastics and thermosets. Herein, a reactive blending strategy is proposed to develop thermoplastic-thermoset blend with enhanced compatibility on the basis of dynamic covalent chemistry. Specifically, polybutylene terephthalate (PBT) and polymerized epoxy vitrimer can be directly melt blended to obtain tough and thermostable blends with desirable microstructures and interfacial interaction. Bond exchange facilitates the grafting of PBT and epoxy vitrimer chains, thus enhancing the interfacial compatibility and thermal stability of blends. The obtained blend balances the strength and stretchability of PBT and epoxy vitrimer, resulting in enhanced toughness. This work offers a new way of designing and fabricating new polymeric materials by blending thermoplastics and thermosets. It also suggests a facile direction towards upcycling thermoplastics and thermosets.


Assuntos
Poliésteres , Polímeros , Resinas Epóxi , Polimerização
2.
Adv Mater ; 33(12): e2008486, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576082

RESUMO

Human fingers exhibit both high sensitivity and wide tactile range. The finger skin structures are designed to display gradient microstructures and compressibility. Inspired by the gradient mechanical Young's modulus distribution, an electric-field-induced cationic crosslinker migration strategy is demonstrated to prepare gradient ionogels. Due to the gradient of the crosslinkers, the ionogels exhibit more than four orders of magnitude difference between the anode and the cathode side, enabling gradient ionogel-based flexible iontronic sensors having high-sensitivity and broader-range detection (from 3 × 102 to 2.5 × 106  Pa) simultaneously. Moreover, owing to the remarkable properties of the gradient ionogels, the flexible iontronic sensors also show good long-time stability (even after 10 000 cycles loadings) and excellent performance over a wide temperature range (from -108 to 300 °C). The flexible iontronic sensors are further integrated on soft grips, exhibiting remarkable performance under various conditions. These attractive features demonstrate that gradient ionogels will be promising candidates for smart sensor applications in complex and extreme conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...