Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714653

RESUMO

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

2.
Adv Mater ; 36(19): e2312620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288906

RESUMO

Vapor-pressure mismatched materials such as transition metal chalcogenides have emerged as electronic, photonic, and quantum materials with scientific and technological importance. However, epitaxial growth of vapor-pressure mismatched materials are challenging due to differences in the reactivity, sticking coefficient, and surface adatom mobility of the mismatched species constituting the material, especially sulfur containing compounds. Here, a novel approach is reported to grow chalcogenides-hybrid pulsed laser deposition-wherein an organosulfur precursor is used as a sulfur source in conjunction with pulsed laser deposition to regulate the stoichiometry of the deposited films. Epitaxial or textured thin films of sulfides with variety of structure and chemistry such as alkaline metal chalcogenides, main group chalcogenides, transition metal chalcogenides, and chalcogenide perovskites are demonstrated, and structural characterization reveal improvement in thin film crystallinity, and surface and interface roughness compared to the state-of-the-art. The growth method can be broadened to other vapor-pressure mismatched chalcogenides such as selenides and tellurides. This work opens up opportunities for broader epitaxial growth of chalcogenides, especially sulfide-based thin film technological applications.

3.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016700

RESUMO

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

12.
Nat Commun ; 14(1): 3744, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353526

RESUMO

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the µm scale, showing control over this order-disorder transition on scales relevant for device applications.


Assuntos
Engenharia , Imãs , Temperatura , Fenômenos Físicos , Fenômenos Magnéticos
13.
Nat Commun ; 14(1): 1355, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907894

RESUMO

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of -1) to a two-dimensional, tetratic lattice of merons (with topological charge of -1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8 membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

14.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739113

RESUMO

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

15.
Nature ; 614(7947): 262-269, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755171

RESUMO

Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3-5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.

16.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536139

RESUMO

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

17.
J Am Chem Soc ; 144(34): 15698-15708, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976815

RESUMO

Cathodic corrosion represents an enigmatic electrochemical process in which metallic electrodes corrode under sufficiently reducing potentials. Although discovered by Fritz Haber in the 19th century, only recently has progress been made in beginning to understand the atomistic mechanisms of corroding bulk electrodes. The creation of nanoparticles as the end-product of the corrosion process suggests an additional length scale of complexity. Here, we studied the dynamic evolution of morphology, composition, and crystallographic structural information of nanocrystal corrosion products by analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy (EC-STEM). Our operando/in situ electron microscopy revealed, in real-time, at the nanometer scale, that cathodic corrosion yields significantly higher levels of structural degradation for heterogeneous nanocrystals than bulk electrodes. In particular, the cathodic corrosion of Au nanocubes on bulk Pt electrodes led to the unexpected formation of thermodynamically immiscible Au-Pt alloy nanoparticles. The highly kinetically driven corrosion process is evidenced by the successive anisotropic transition from stable Pt(111) bulk single-crystal surfaces evolving to energetically less-stable (100) and (110) steps. The motifs identified in this microscopy study of cathodic corrosion of nanocrystals are likely to underlie the structural evolution of nanoscale electrocatalysts during many electrochemical reactions under highly reducing potentials, such as CO2 and N2 reduction.


Assuntos
Ligas , Ligas/química , Corrosão , Eletrodos , Microscopia Eletrônica de Transmissão
18.
Phys Rev Lett ; 128(21): 217203, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687434

RESUMO

The existence of long-range magnetic order in low-dimensional magnetic systems, such as the quasi-two-dimensional van der Waals (vdW) magnets, has attracted intensive studies of new physical phenomena. The vdW Fe_{N}GeTe_{2} (N=3, 4, 5; FGT) family is exceptional, owing to its vast tunability of magnetic properties. In particular, a ferromagnetic ordering temperature (T_{C}) above room temperature at N=5 (F5GT) is observed. Here, our study shows that, by nickel (Ni) substitution of iron in F5GT, a record high T_{C}=478(6) K is achieved. Importantly, pervasive, beyond room-temperature ferromagnetism exists in almost the entire doping range of the phase diagram of Ni-F5GT. We argue that this striking observation in Ni-F5GT can be possibly due to several contributing factors, including increased 3D magnetic couplings due to the structural alterations.

19.
Microscopy (Oxf) ; 71(Supplement_1): i116-i131, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275190

RESUMO

Transmission electron diffraction is a powerful and versatile structural probe for the characterization of a broad range of materials, from nanocrystalline thin films to single crystals. With recent developments in fast electron detectors and efficient computer algorithms, it now becomes possible to collect unprecedently large datasets of diffraction patterns (DPs) and process DPs to extract crystallographic information to form images or tomograms based on crystal structural properties, giving rise to data-driven electron microscopy. Critical to this kind of imaging is the type of crystallographic information being collected, which can be achieved with a judicious choice of electron diffraction techniques, and the efficiency and accuracy of DP processing, which requires the development of new algorithms. Here, we review recent progress made in data collection, new algorithms, and automated electron DP analysis. These progresses will be highlighted using application examples in materials research. Future opportunities based on smart sampling and machine learning are also discussed.

20.
Microsc Microanal ; : 1-16, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35249574

RESUMO

Precision and accuracy of quantitative scanning transmission electron microscopy (STEM) methods such as ptychography, and the mapping of electric, magnetic, and strain fields depend on the dose. Reasonable acquisition time requires high beam current and the ability to quantitatively detect both large and minute changes in signal. A new hybrid pixel array detector (PAD), the second-generation Electron Microscope Pixel Array Detector (EMPAD-G2), addresses this challenge by advancing the technology of a previous generation PAD, the EMPAD. The EMPAD-G2 images continuously at a frame-rates up to 10 kHz with a dynamic range that spans from low-noise detection of single electrons to electron beam currents exceeding 180 pA per pixel, even at electron energies of 300 keV. The EMPAD-G2 enables rapid collection of high-quality STEM data that simultaneously contain full diffraction information from unsaturated bright-field disks to usable Kikuchi bands and higher-order Laue zones. Test results from 80 to 300 keV are presented, as are first experimental results demonstrating ptychographic reconstructions, strain and polarization maps. We introduce a new information metric, the maximum usable imaging speed (MUIS), to identify when a detector becomes electron-starved, saturated or its pixel count is mismatched with the beam current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...