Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Metab Syndr Obes ; 17: 1563-1573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601038

RESUMO

Introduction: Diabetes and obesity are momentous risk factors threatening people's lives and health. Currently available incretin analogue glucagon-like peptide 1 (GLP-1) possesses huge hypoglycemic effect with the unsatisfactory effect of weight loss. Co-agonists targeting GLP-1R plus glucagon receptor (GCGR) or gastric inhibitory polypeptide receptor (GIPR) show synergistic benefits in glycaemic control and weight loss. Here, we describe a novel dual GIP and GLP-1 receptor agonist, DR10627, and performed a preclinical assessment of it. Methods: The agonistic ability of DR10627 was indirectly assessed by inducing cAMP accumulation in Chinese hamster ovary (CHO) cells transfected with GLP-1R or GIPR in vitro. The plasma pharmacokinetics of DR10627 were analysed in cynomolgus monkeys. The OGTTs were performed in Sprague­Dawley (SD) rats. The glucose lowering effects were evaluated by repeated administration of DR10627 in diabetic (db/db) mice for 4 weeks. The effects of anti-obesity and improving metabolism of DR10627 were evaluated by repeated administration of DR10627 in diet-induced obesity (DIO) mice for 57 days. Results: DR10627 had the capacity to activate both GLP-1R and GIPR in vitro. The terminal half-life of DR10627 was found to be approximately 4.19-5.8 h in cynomolgus monkeys. DR10627 had a great improvement in oral glucose tolerance in SD rats. Moreover, DR10627 had a potent glucose-lowering effect in db/db mice, and the hypoglycemic effect of 18 nmol/kg DR10627 was better than that of 50 nmol/kg liraglutide. In addition, 10 and 30 nmol/kg DR10627 possessed the ability of potentiating the weight-loss, lipid-lowing efficacy and improving metabolism to a greater extent than 80 nmol/kg liraglutide. Conclusion: Preclinical assessment demonstrated that administration of DR10627 resulted in glucose lowering in SD rats and db/db mice, and substantial body weight reduction and metabolism improvement in DIO mice. DR10627 is a promising agent deserving further investigation for the treatment of type 2 diabetes and obesity.

2.
Front Plant Sci ; 12: 753148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603364

RESUMO

Plants rapidly adapt to elevated ambient temperature by adjusting their growth and developmental programs. To date, a number of experiments have been carried out to understand how plants sense and respond to warm temperatures. However, how warm temperature signals are relayed from thermosensors to transcriptional regulators is largely unknown. To identify new early regulators of plant thermo-responsiveness, we performed phosphoproteomic analysis using TMT (Tandem Mass Tags) labeling and phosphopeptide enrichment with Arabidopsis etiolated seedlings treated with or without 3h of warm temperatures (29°C). In total, we identified 13,160 phosphopeptides in 5,125 proteins with 10,700 quantifiable phosphorylation sites. Among them, 200 sites (180 proteins) were upregulated, while 120 sites (87 proteins) were downregulated by elevated temperature. GO (Gene Ontology) analysis indicated that phosphorelay-related molecular function was enriched among the differentially phosphorylated proteins. We selected ATL6 (ARABIDOPSIS TOXICOS EN LEVADURA 6) from them and expressed its native and phosphorylation-site mutated (S343A S357A) forms in Arabidopsis and found that the mutated form of ATL6 was less stable than that of the native form both in vivo and in cell-free degradation assays. Taken together, our data revealed extensive protein phosphorylation during thermo-responsiveness, providing new candidate proteins/genes for studying plant thermomorphogenesis in the future.

3.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371194

RESUMO

Accumulation of unfolded and misfolded proteins in endoplasmic reticulum (ER) elicits a well-conserved response called the unfolded protein response (UPR), which triggers the upregulation of downstream genes involved in protein folding, vesicle trafficking, and ER-associated degradation (ERAD). Although dynamic transcriptomic responses and the underlying major transcriptional regulators in ER stress response in Arabidopsis have been well established, the proteome changes induced by ER stress have not been reported in Arabidopsis. In the current study, we found that the Arabidopsis Landsberg erecta (Ler) ecotype was more sensitive to ER stress than the Columbia (Col) ecotype. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that, in total, 7439 and 7035 proteins were identified from Col and Ler seedlings, with 88 and 113 differentially regulated (FC > 1.3 or <0.7, p < 0.05) proteins by ER stress in Col and Ler, respectively. Among them, 40 proteins were commonly upregulated in Col and Ler, among which 10 were not upregulated in bzip28 bzip60 double mutant (Col background) plants. Of the 19 specifically upregulated proteins in Col, as compared with that in Ler, components in ERAD, N-glycosylation, vesicle trafficking, and molecular chaperones were represented. Quantitative RT-PCR showed that transcripts of eight out of 19 proteins were not upregulated (FC > 1.3 or <0.7, p < 0.05) by ER stress in Col ecotype, while transcripts of 11 out of 19 proteins were upregulated by ER stress in both ecotypes with no obvious differences in fold change between Col and Ler. Our results experimentally demonstrated the robust ER stress response at the proteome level in plants and revealed differentially regulated proteins that may contribute to the differed ER stress sensitivity between Col and Ler ecotypes in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ecótipo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Proteoma/análise , Plântula/metabolismo , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Plântula/genética , Plântula/crescimento & desenvolvimento
4.
Chronobiol Int ; 32(10): 1458-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26595385

RESUMO

Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p < 0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and metabolic regulators. This forms an important basis for further elucidation of the physiological benefits of EC-facilitated circadian synchrony.


Assuntos
Adaptação Fisiológica/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Fígado/metabolismo , Animais , Comportamento Animal , Galinhas , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...