Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-927681

RESUMO

Objective@#To investigate the function of primary cilia in regulating the cellular response to temozolomide (TMZ) and ionizing radiation (IR) in glioblastoma (GBM).@*Methods@#GBM cells were treated with TMZ or X-ray/carbon ion. The primary cilia were examined by immunostaining with Arl13b and γ-tubulin, and the cellular resistance ability was measured by cell viability assay or survival fraction assay. Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride, the autophagy was measured by acridine orange staining assay. The DNA damage repair ability was estimated by the kinetic curve of γH2AX foci, and the DNA-dependent protein kinase (DNA-PK) activation was detected by immunostaining assay.@*Results@#Primary cilia were frequently preserved in GBM, and the induction of ciliogenesis decreased cell proliferation. TMZ and IR promoted ciliogenesis in dose- and time-dependent manners, and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR. The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair. The interference of ciliogenesis reduced DNA-PK activation, and the knockdown of DNA-PK led to cilium formation and elongation.@*Conclusion@#Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.


Assuntos
Humanos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , DNA/uso terapêutico , Glioblastoma/metabolismo , Radiação Ionizante , Temozolomida/uso terapêutico
2.
J Asian Nat Prod Res ; 18(7): 677-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26828227

RESUMO

A facile synthetic approach for total synthesis of tanshinone I has been accomplished. The key precursor is a novel compound, epoxy phenanthraquinone. And this synthesis of tanshinone I is achieved in only three simple stages, which include Diels-Alder reaction, Δ(2)-Weitz-Scheffer-type epoxidation, and Feist-Bénary reaction from commercially available styrene.


Assuntos
Abietanos/síntese química , Estireno/química , Abietanos/química , Modelos Moleculares , Estrutura Molecular , Raízes de Plantas/química , Salvia/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...