Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(15): 19403-19413, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37027250

RESUMO

Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization. The clays were found to reduce the front velocity of RICFP systems overall compared to systems with only fumed silica. It is hypothesized that chemical effects and water content produce this reduction when clays are added to the cationic system. Mechanical and thermal properties of composites were studied, along with filler dispersion in the cured material. Drying the clays in an oven increased the front velocity. Comparing thermally insulating wood flour to thermally conducting carbon fibers, we observed that the carbon fibers resulted in an increase in front velocity, while the wood flour reduced the front velocity. Finally, it was shown that acid-treated montmorillonite K10 polymerizes RICFP systems containing vinyl ether even in the absence of an initiator, resulting in a short pot life.

2.
Chaos ; 31(7): 073113, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340327

RESUMO

Frontal polymerization, which involves a self-propagating polymerizing reaction front, has been considered as a rapid, energy-efficient, and environmentally friendly methodology to manufacture lightweight, high-performance thermoset polymers, and composites. Previous work has reported that the introduction of thermally conductive elements can enhance the front velocity. As follow-up research, the present work investigates this problem more systemically using both numerical and experimental approaches by investigating the front shape, front width, and heat exchange when aluminum and cooper metal strips are embedded in the resin. The study reveals that the enhancement in the front velocity is mainly due to a preheating effect associated with the conductive element. Moreover, the numerical parametric study for the system size shows that the front speed increases as the system size decreases, ultimately approaching a prediction provided by a homogenized model for polymer-metal composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...