Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453816

RESUMO

Fructose consumption is associated with metabolic syndrome (MeS). Dysregulated lipid metabolism and ectopic lipid accumulation, such as in "fatty liver'', are pivotal components of the syndrome. MeS is also associated with chronic kidney disease (CKD). The aim of this study was to evaluate kidney fructose metabolism and whether the addition of fructose leads to intrarenal fat accumulation. Sprague Dawley rats were fed either normal chow (Ctrl) or a high-fructose diet (HFrD). MeS features such as blood pressure and metabolic parameters in blood were measured. The kidneys were harvested for ChREBPß and de novo lipogenesis (DNL) gene expression, triglyceride content and histopathology staining. HK2 (human kidney) cells were treated with fructose for 48 h and gene expression for ChREBPß and DNL were determined. The HFrD rats exhibited higher blood pressure, glucose and triglyceride levels. The kidney weight of the HFrD rats was significantly higher than Ctrl rats. The difference can be explained by the higher triglyceride content in the HFrD kidneys. Oil red staining revealed lipid droplet formation in the HFrD kidneys, which was also supported by increased adipophilin mRNA expression. For ChREBPß and its downstream genes, scd and fasn, mRNA expression was elevated in the HFrD kidneys. Treating HK2 cells with 40 mM fructose increased the expression of ChREBPß. This study demonstrates that fructose consumption leads to intrarenal lipid accumulation and to the formation of a "fatty kidney". This suggests a potential mechanism that can at least partially explain CKD development in fructose-induced MeS.

2.
Planta ; 252(5): 77, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033936

RESUMO

MAIN CONCLUSION: The dead husk is a vital component of the dispersal unit whose biochemical properties can be modified following exposure to drought. This might affect seed performance and fate, soil properties and consequently plant biodiversity. We investigated the effects of extreme drought on the dispersal unit (DU) properties of winter wild oat (Avena sterilis L.) in the Mediterranean ecosystems focusing on a commonly ignored component of the DU, namely the dead floral bracts (husk). DUs were collected from a climate change experimental research station in the Judean Hills, Israel, simulating extreme drought and from two additional sites differing in the rainfall amounts. Our results showed that drought conditions significantly affected A. sterilis reproductive traits displaying reduced DUs and caryopses weights. The husk contributes profoundly to seed performance showing that germination from the intact DUs or the intact florets 1 was higher, faster and more homogenous compared to naked caryopses; no effect of drought on germination properties was observed. The husk stored hundreds of proteins that retain enzymatic activity and multiple metabolites including phytohormones. Changes in rainfall amounts affected the composition and levels of proteins and other metabolites accumulated in the husk, with a notable effect on abscisic acid (ABA). The husk of both control and drought plants released upon hydration substances that selectively inhibited other species seed germination as well as substances that promoted microbial growth. Our data showed that the dead husk represents a functional component of the DU that have been evolved to nurture the embryo and to ensure its success in its unique habitat. Furthermore, drought conditions can modify husk biochemical properties, which in turn might affect seed performance and fate, soil microbiota and soil fertility and consequently plant species diversity.


Assuntos
Avena , Secas , Dispersão de Sementes , Avena/enzimologia , Ecossistema , Germinação , Dispersão de Sementes/fisiologia , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...