Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 51(9): 2007-2024, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35397773

RESUMO

Many threats to biodiversity can be predicted and are well mapped but others are uncertain in their extent, impact on biodiversity, and ability for conservation efforts to address, making them more difficult to account for in spatial conservation planning efforts, and as a result, they are often ignored. Here, we use a spatial prioritisation analysis to evaluate the consequences of considering only relatively well-mapped threats to biodiversity and compare this with planning scenarios that also account for more uncertain threats (in this case mining and armed conflict) under different management strategies. We evaluate three management strategies to address these more uncertain threats: 1. to ignore them; 2. avoid them; or 3. specifically target actions towards them, first individually and then simultaneously to assess the impact of their inclusion in spatial prioritisations. We apply our approach to the eastern Democratic Republic of the Congo (DRC) and identify priority areas for conserving biodiversity and carbon sequestration services. We found that a strategy that avoids addressing threats of mining and armed conflict more often misses important opportunities for biodiversity conservation, compared to a strategy that targets action towards areas under threat (assuming a biodiversity benefit is possible). We found that considering mining and armed conflict threats to biodiversity independently rather than simultaneously results in 13 800-14 800 km2 and 15 700-25 100 km2 of potential missed conservation opportunities when undertaking threat-avoiding and threat-targeting management strategies, respectively. Our analysis emphasises the importance of considering all threats that can be mapped in spatial conservation prioritisation.


Assuntos
Conservação dos Recursos Naturais , Florestas , Conflitos Armados , Biodiversidade , Conservação dos Recursos Naturais/métodos , Mineração
2.
Ecol Appl ; 30(8): e02203, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598524

RESUMO

In many savannah regions of Africa, pronounced seasonal variability in rainfall results in wildlife being restricted to floodplains and other habitats adjacent to permanent surface water in the dry season. During the wet season, rainfall fills small-scale, ephemeral water sources that allow wildlife to exploit forage and other resources far from permanent surface water. These water sources remain difficult to quantify, however, due to their small and ephemeral nature, and as a result are rarely included in quantitative studies of wildlife distribution, abundance, and movement. Our goal was to map ephemeral water in Bwabwata National Park in Namibia using two different approaches and to relate measures of ephemeral water to the abundance, distribution, and movement of two large wildlife species. We used high-resolution Google Earth and Esri World imagery to visually identify waterholes. Additionally, we used Sentinel-2 satellite imagery to map ephemeral water across the study area using the Normalized Difference Water Index. With these mapped waterhole layers and data from GPS-collared individuals of African elephant (Loxodonta africana) and African buffalo (Syncerus caffer), we evaluated the importance of ephemeral water in conditioning abundance and movement of these two species. The two approaches to mapping ephemeral water resulted in the visual identification of nearly 10,000 waterholes, and a predicted ephemeral water layer of ~76% accuracy. The inclusion of ephemeral water into models of abundance and movement resulted in improved goodness of fit relative to those without water, and water impacts on abundance and movement were among the strongest of all variables considered. The potential importance of ephemeral water in conditioning the movements and distributions of large herbivores in African savannahs has been difficult to quantify relative to vegetation drivers. Our results suggest research into ephemeral water impacts deserves more attention.


Assuntos
Elefantes , Água , África , Animais , Ecossistema , Estações do Ano
3.
Carbon Balance Manag ; 11(1): 11, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27398090

RESUMO

BACKGROUND: Recent studies have shown that fragmentation is an increasing threat to global forests, which has major impacts on biodiversity and the important ecosystem services provided by forested landscapes. Several tools have been developed to evaluate global patterns of fragmentation, which have potential applications for REDD+. We study how canopy height and above ground biomass (AGB) change across several categories of forest edges determined by fragmentation analysis. We use Democratic Republic of Congo (DRC) as an example. RESULTS: An analysis of variance of different edge widths and airborne estimated canopy height found that canopy heights were significantly different in forest edges at a distance of 100 m from the nonforest edge. Biomass was significantly different between fragmentation classes at an edge distance of 300 m. Core forest types were found to have significantly higher canopy height and greater AGB than forest edges and patches, where height and biomass decrease significantly as the level of fragmentation increases. A change analysis shows that deforestation and degradation are increasing over time and biomass loss associated with degradation account for at least one quarter of total loss. We estimate that about 80 % of primary forests are intact, which decreases 3.5 % over the 15 year study period, as primary forest is either deforested or transitioned to forest edge. While the carbon loss per hectare is lower than that of deforestation, degradation potentially affects up to three times more area than deforestation alone. CONCLUSIONS: When defining forest degradation by decreased biomass without any loss in forest area, assessing transitions of core forest to edges over time can contribute an important element to REDD+MRV systems. The estimation of changes between different forest fragmentation types and their associated biomass loss can provide an estimate of degradation carbon emission factors. Forest degradation and emissions due to fragmentation are often underestimated and should comprise an essential component of MRV systems.

4.
PLoS One ; 5(3): e9612, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20305809

RESUMO

BACKGROUND: The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. CONCLUSION/SIGNIFICANCE: Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.


Assuntos
Gatos/fisiologia , Espécies em Perigo de Extinção , Densidade Demográfica , Animais , Sudeste Asiático , Biologia Computacional/métodos , Conservação dos Recursos Naturais , Extinção Biológica , Geografia , Humanos , Modelos Biológicos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...