Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(4): 663-676, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149920

RESUMO

Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-ß expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.


Assuntos
Corpos Estranhos , Reação a Corpo Estranho , Camundongos , Animais , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Células Gigantes de Corpo Estranho/metabolismo , Inflamação/metabolismo , Corpos Estranhos/metabolismo , Próteses e Implantes/efeitos adversos , Ubiquitinação
2.
Sci Rep ; 11(1): 10736, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031489

RESUMO

The transmembrane aminopeptidase CD13 is highly expressed in cells of the myeloid lineage, regulates dynamin-dependent receptor endocytosis and recycling and is a necessary component of actin cytoskeletal organization. Here, we show that CD13-deficient mice present a low bone density phenotype with increased numbers of osteoclasts per bone surface, but display a normal distribution of osteoclast progenitor populations in the bone marrow and periphery. In addition, the bone formation and mineral apposition rates are similar between genotypes, indicating a defect in osteoclast-specific function in vivo. Lack of CD13 led to exaggerated in vitro osteoclastogenesis as indicated by significantly enhanced fusion of bone marrow-derived multinucleated osteoclasts in the presence of M-CSF and RANKL, resulting in abnormally large cells containing remarkably high numbers of nuclei. Mechanistically, while expression levels of the fusion-regulatory proteins dynamin and DC-STAMP1 must be downregulated for fusion to proceed, these are aberrantly sustained at high levels even in CD13-deficient mature multi-nucleated osteoclasts. Further, the stability of fusion-promoting proteins is maintained in the absence of CD13, implicating CD13 in protein turnover mechanisms. Together, we conclude that CD13 may regulate cell-cell fusion by controlling the expression and localization of key fusion regulatory proteins that are critical for osteoclast fusion.


Assuntos
Reabsorção Óssea/genética , Antígenos CD13/genética , Antígenos CD13/metabolismo , Osteoclastos/patologia , Animais , Densidade Óssea , Reabsorção Óssea/patologia , Diferenciação Celular , Fusão Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Osteoclastos/metabolismo , Células U937
3.
Exp Eye Res ; 208: 108628, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048779

RESUMO

Dry eye disease (DED) affects hundreds of millions of people worldwide. It is characterized by the production of inflammatory cytokines and chemokines as well as damaging matrix metalloproteinases (MMPs) at the ocular surface. While proteoglycan 4 (PRG4), a mucin-like glycoprotein present at the ocular surface, is most well known as a boundary lubricant that contributes to ocular surface integrity, it has been shown to blunt inflammation in various cell types, suggesting a dual mechanism of action. Recently, full-length recombinant human PRG4 (rhPRG4) has been shown to improve signs and symptoms of DED in humans. However, there remains a significant need for basic science research on rhPRG4's biological properties and its potential therapeutic mechanisms of action in treating DED. Therefore, the objectives of this study were to characterize endogenous PRG4 expression by telomerase-immortalized human corneal epithelial (hTCEpi) cells, examine whether exogenous rhPRG4 modulates cytokine and chemokine secretion in response to dry eye associated inflammation (TNFα and IL-1ß), explore interactions between rhPRG4 and MMP-9, and understand how experimental dry eye (EDE) in mice affects PRG4 expression. PRG4 secretion from hTCEpi cells was quantified by Western blot and expression visualized by immunocytochemistry. Cytokine/chemokine production was measured by ELISA and Luminex, while rhPRG4's effect on MMP-9 activity, binding, and expression was quantified using an MMP-9 inhibitor kit, surface plasmon resonance, and reverse transcription polymerase chain reaction (RT-PCR), respectively. Finally, EDE was induced in mice, and PRG4 was visualized by immunohistochemistry in the cornea and by Western blot in lacrimal gland lysate. In vitro results demonstrate that hTCEpi cells synthesize and secrete PRG4, and PRG4 secretion is inhibited by TNFα and IL-1ß. In response to these pro-inflammatory stresses, exogenous rhPRG4 significantly reduced the stimulated production of IP-10, RANTES, ENA-78, GROα, MIP-3α, and MIG, and trended towards a reduction of MIP-1α and MIP-1ß. The hTCEpi cells were also able to internalize fluorescently-labelled rhPRG4, consistent with a mechanism of action that includes downstream biological signaling pathways. rhPRG4 was not digested by MMP-9, and it did not modulate MMP-9 gene expression in hTCEpi cells, but it was able to bind to MMP-9 and inhibited in vitro activity of exogenous MMP-9 in the presence of human tears. Finally, in vivo results demonstrate that EDE significantly decreased immunolocalization of PRG4 on the corneal epithelium and trended towards a reduction of PRG4 in lacrimal gland lysate. Collectively these results demonstrate rhPRG4 has anti-inflammatory properties on corneal epithelial cells, particularly as it relates to mitigating chemokine production, and is an inhibitor of MMP-9 activity, as well as that in vivo expression of PRG4 can be altered in preclinical models of DED. In conclusion, these findings contribute to our understanding of PRG4's immunomodulatory properties in the context of DED inflammation and provide the foundation and motivation for further mechanistic research of PRG4's properties on the ocular surface as well as expanding clinical evaluation of its ability as a multifunctional therapeutic agent to effectively provide relief to those who suffer from DED.


Assuntos
Síndromes do Olho Seco/genética , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteoglicanas/genética , RNA/genética , Lágrimas/metabolismo , Western Blotting , Células Cultivadas , Quimiocinas/metabolismo , Síndromes do Olho Seco/complicações , Síndromes do Olho Seco/patologia , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/patologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Proteoglicanas/biossíntese
4.
J Immunol ; 206(5): 923-929, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380494

RESUMO

The Coronaviridae family includes the seven known human coronaviruses (CoV) that cause mild to moderate respiratory infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1) as well as severe illness and death (MERS-CoV, SARS-CoV, SARS-CoV-2). Severe infections induce hyperinflammatory responses that are often intensified by host adaptive immune pathways to profoundly advance disease severity. Proinflammatory responses are triggered by CoV entry mediated by host cell surface receptors. Interestingly, five of the seven strains use three cell surface metallopeptidases (CD13, CD26, and ACE2) as receptors, whereas the others employ O-acetylated-sialic acid (a key feature of metallopeptidases) for entry. Why CoV evolved to use peptidases as their receptors is unknown, but the peptidase activities of the receptors are dispensable, suggesting the virus uses/benefits from other functions of these molecules. Indeed, these receptors participate in the immune modulatory pathways that contribute to the pathological hyperinflammatory response. This review will focus on the role of CoV receptors in modulating immune responses.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Imunomodulação , Metaloproteases/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Humanos , Imunidade , Interleucina-6/imunologia , Internalização do Vírus
6.
J Pediatr Urol ; 16(4): 466.e1-466.e9, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32620509

RESUMO

INTRODUCTION AND OBJECTIVE: Reliable urinary biomarker proteins would be invaluable in identifying children with ureteropelvic junction obstruction (UPJO) as the existing biomarker proteins are inconsistent in their predictive ability. Therefore, the aim of this study was to identify consistent and reliable urinary biomarker proteins in children with UPJO. METHODS: To identify candidate biomarker proteins, total protein from age-restricted (<2 years) and sex-matched (males) control (n = 22) and UPJO (n = 21) urine samples was analyzed by mass spectrometry. Proteins that were preferentially identified in UPJO samples were selected (2-step process) and ranked according to their diagnostic odds ratio value. The top ten proteins with highest odds ratio values were selected and tested individually by ELISA. The total amount of each protein was normalized to urine creatinine and the median with interquartile ranges for control and UPJO samples was determined. Additionally, fold change (UPJO/Control) of medians of the final panel of 5 proteins was also determined. Finally, we calculated the average + 3(SD) and average + 4(SD) values of each of the 5 proteins in the control samples and used it as an arbitrary cutoff to classify individual control and UPJO samples. RESULTS: In the first step of our selection process, we identified 171 proteins in UPJO samples that were not detected in the majority of the control samples (16/22 samples, or 72.7%). Of the 171 proteins, only 50 proteins were detected in at least 11/21 (52.4%) of the UPJO samples and hence were selected in the second step. Subsequently, these 50 proteins were ranked according to the odds ratio value and the top 10 ranked proteins were validated by ELISA. Five of the 10 proteins - prostaglandin-reductase-1, ficolin-2, nicotinate-nucleotide pyrophosphorylase [carboxylating], immunoglobulin superfamily-containing leucine-rich-repeat-protein and vascular cell adhesion molecule-1 were present at higher levels in the UPJO samples (fold-change of the median protein concentrations ranging from 2.9 to 9.4) and emerged as a panel of biomarkers to identify obstructive uropathy. Finally, the order of prevalence of the 5 proteins in UPJO samples is PTGR1>FCN2>QPRT>ISLR>VCAM1. CONCLUSION: In summary, this unique screening strategy led to the identification of previously unknown biomarker proteins that when screened collectively, may reliably distinguish between obstructed vs. non-obstructed infants and may prove useful in identifying informative biomarker panels for biological samples from many diseases.


Assuntos
Obstrução Ureteral , Biomarcadores , Criança , Pré-Escolar , Humanos , Lactente , Pelve Renal , Lipocalina-2 , Masculino , Projetos Piloto , Obstrução Ureteral/diagnóstico , Urinálise
7.
Mol Cell Oncol ; 6(6): e1648024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692781

RESUMO

Membrane recycling is critical to numerous cell functions and its dysregulation contributes to cancer and metastasis. We established that activation of the transmembrane molecule aminopeptidase N (ANPEP, also known as CD13) tethers the IQ motif containing, guanosine triphosphate hydrolase activating protein 1 (IQGAP1) scaffolding protein at the plasma membrane, thus stimulating the recycling regulator ADP-ribosylation factor 6 (ARF6) to ensure proper recycling of ß1-integrin and other membrane components impacting cell attachment.

8.
Atherosclerosis ; 287: 70-80, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229835

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is an inflammatory cardiovascular disorder characterized by accumulation of lipid-loaded macrophages in the intima. Prolonged accumulation leads to apoptosis of macrophages and eventually to progression of lesion development. Prevention of macrophage accumulation within the intima has been shown to reduce lesion formation. Since CD13 mediates trafficking of macrophages to sites of injury and repair, we tested the role of CD13 in atherosclerosis. METHODS: CD13+/+Ldlr-/- and CD13-/-Ldlr-/- (low density lipoprotein receptor) mice were fed basal or high fat diet (HFD) for 9, 12 and 15 weeks. Mice were euthanized and aortic roots along with innominate arteries were analyzed for atherosclerotic lesions. Cellular mechanisms were determined in vitro using CD13+/+ and CD13-/- bone marrow derived macrophages (BMDMs) incubated with highly oxidized low-density lipoprotein (oxLDL). RESULTS: At the 9 and 12 week time points, no differences were observed in the average lesion size, but at the 15 week time point, CD13-/-Ldlr-/- mice had larger lesions with exaggerated necrotic areas. CD13+/+ and CD13-/- macrophages endocytosed similar amounts of oxLDL, but CD13-/- macrophages generated higher amounts of oxidative stressors in comparison to CD13+/+ macrophages. This increased oxidative stress was due to increased nitric oxide production in oxLDL treated CD13-/- macrophages. Accumulated oxidative stress subsequently led to accelerated apoptosis and enhanced necrosis of oxLDL treated CD13-/- macrophages. CONCLUSIONS: Contrary to our prediction, CD13 deficiency led to larger atherosclerotic lesions with increased areas of necrosis. Mechanistically, CD13 deficiency led to increased nitric oxide production and consequently, greater oxidative stress.


Assuntos
Aterosclerose/metabolismo , Antígenos CD13/deficiência , Macrófagos/metabolismo , Estresse Oxidativo , Animais , Apoptose , Aterosclerose/patologia , Antígenos CD13/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Signal ; 12(579)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040262

RESUMO

Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the ß1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with ß1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized ß1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Antígenos CD13/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Antígenos CD13/genética , Adesão Celular , Linhagem Celular Tumoral , Endocitose , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Transporte Proteico
10.
BMC Syst Biol ; 12(1): 50, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631571

RESUMO

BACKGROUND: Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases. The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents can be designed that antagonize their harmful effects while preserving host defense functions. This requires an understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific pathway components, predict potential outcomes and identify safe and effective therapeutic targets. RESULTS: We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation, macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by assessing its ability to reproduce published data not used in its construction. CONCLUSIONS: These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating ischemic/inflammatory injury.


Assuntos
Imunidade Inata , Isquemia/imunologia , Modelos Imunológicos , Antígenos CD13/metabolismo , Morte Celular/imunologia , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo
11.
PLoS One ; 13(3): e0194053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518138

RESUMO

Sphingosine Kinase-2 (Sphk2) is responsible for the production of the bioactive lipid Sphingosine-1 Phosphate, a key regulator of tissue repair. Here we address the in vivo significance of Sphingosine Kinase -2 in renal inflammation/fibrosis in response to unilateral ureteral obstruction using both genetic and pharmacological strategies. Obstructed kidneys of Sphk2-/- mice showed reduced renal damage and diminished levels of the renal injury markers TGFß1 and αSMA when compared to wild type controls. We found a consistently significant increase in anti-inflammatory (M2) macrophages in obstructed Sphk2-/- kidneys by flow cytometry and a decrease in mRNA levels of the inflammatory cytokines, MCP1, TNFα, CXCL1 and ILß1, suggesting an anti-inflammatory bias in the absence of Sphk2. Indeed, metabolic profiling showed that the pro-inflammatory glycolytic pathway is largely inactive in Sphk2-/- bone marrow-derived macrophages. Furthermore, treatment with the M2-promoting cytokines IL-4 or IL-13 demonstrated that macrophages lacking Sphk2 polarized more efficiently to the M2 phenotype than wild type cells. Bone marrow transplant studies indicated that expression of Sphk2-/- on either the hematopoietic or parenchymal cells did not fully rescue the pro-healing phenotype, confirming that both infiltrating M2-macrophages and the kidney microenvironment contribute to the damaging Sphk2 effects. Importantly, obstructed kidneys from mice treated with an Sphk2 inhibitor recapitulated findings in the genetic model. These results demonstrate that reducing Sphk2 activity by genetic or pharmacological manipulation markedly decreases inflammatory and fibrotic responses to obstruction, resulting in diminished renal injury and supporting Sphk2 as a novel driver of the pro-inflammatory macrophage phenotype.


Assuntos
Macrófagos/fisiologia , Nefrite Intersticial/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Actinas/biossíntese , Actinas/genética , Animais , Microambiente Celular , Citocinas/biossíntese , Citocinas/genética , Fibrose , Regulação da Expressão Gênica/imunologia , Glicólise , Rim/enzimologia , Rim/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/fisiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/etiologia , Nefrite Intersticial/imunologia , Nefrite Intersticial/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Isoformas de Proteínas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/fisiologia , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Obstrução Ureteral/complicações
12.
Mol Cell Oncol ; 4(4): e1321168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28868342

RESUMO

Increased Prostate Specific Membrane Antigen expression promotes tumor progression in prostate epithelium by dysregulating the ß1-integrin/type I insulin-like growth factor receptor axis, resulting in a shift in signaling from the less aggressive mitogen-activated protein kinase-extracellular signal-regulated kinases 1 and 2 pathway to the pro-survival protein kinase B(AKT)/phosphatidylinositol 3-kinase pathway.

13.
Sci Signal ; 10(470)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292957

RESUMO

Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the ß1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/ß1 integrin axis may occur in other tumors.


Assuntos
Glutamato Carboxipeptidase II/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes , Glutamato Carboxipeptidase II/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptor IGF Tipo 1/metabolismo
14.
Angiogenesis ; 19(4): 487-500, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387982

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.


Assuntos
Proteínas Angiogênicas/metabolismo , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Laminina/metabolismo , Antígenos de Superfície/genética , Adesão Celular , Dipeptídeos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glutamato Carboxipeptidase II/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrólise , Integrina beta1/metabolismo , Masculino , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neovascularização Fisiológica , Fragmentos de Peptídeos/metabolismo , Proteólise , Especificidade por Substrato
15.
Urol Oncol ; 34(2): 103-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26519985

RESUMO

Rhabdomyosarcoma (RMS) represents the most common soft tissue sarcoma in infants and children and the third most common pediatric solid tumor, accounting for 5% to 15% of all childhood solid tumors. Of these, 15% to 20% arise from the genitourinary tract, with the most common sites originating from the prostate, bladder, and paratesticular regions, followed by the vagina and uterus. Although upfront radical surgery was used at the initiation of Intergroup RMS Study-I (1972-1978), the treatment paradigm has shifted to include initial biopsy with the goal of organ preservation, systemic chemotherapy for all patients, and local control involving surgical resection with or without radiation therapy for most patients. Collaborative group clinical trials have led to dramatic improvement in survival rates from 1960 to 1996 among patients with low- or intermediate-risk disease; however, outcomes appear to have plateaued in more recent years, and the prognosis for patients with metastatic or relapsed/refractory disease remains poor. Current management goals include minimizing toxicity while maintaining the excellent outcomes in low-risk disease, as well as improving outcomes in patients with intermediate- and high-risk disease. Advances in genetic analysis have allowed further refinement in risk stratification of patients. Perhaps the most significant recent development in RMS research was the discovery of an association of alveolar RMS (ARMS) with translocations t(2;13) and t(1;13). Translocation fusion-positive tumors comprise 80% of ARMS and are more aggressive. Fusion-negative ARMS may have a clinical course similar to embryonal RMS. Future Children's Oncology Group sarcoma studies will likely incorporate fusion status into risk stratification and treatment allocation. Newer radiotherapy modalities hold promise for providing local control of disease while minimizing morbidity. The addition of traditional cytotoxic chemotherapeutic agents does not seem to improve outcomes in high-risk patients. Ultimately, the most substantial progress may arise from further elucidation of genetic and molecular pathways involved in RMS tumor formation in an effort to identify novel, targeted therapeutic approaches.


Assuntos
Rabdomiossarcoma/terapia , Neoplasias Urogenitais/terapia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Risco , Translocação Genética , Resultado do Tratamento , Neoplasias Urogenitais/epidemiologia , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/patologia
16.
J Pediatr Urol ; 12(2): 120.e1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26705690

RESUMO

PURPOSE: Ureteropelvic junction obstruction (UPJO) is the major cause of hydronephrosis in children and may lead to renal injury and early renal dysfunction. However, diagnosis of the degree of obstruction and severity of renal injury relies on invasive and often inconclusive renal scans. Biomarkers from voided urine that detect early renal injury are highly desirable because of their noninvasive collection and their potential to assist in earlier and more reliable diagnosis of the severity of obstruction. Early in response to UPJO, increased intrarenal pressure directly impacts the proximal tubule brush border. We hypothesize that single-pass, apically expressed proximal tubule brush border proteins will be shed into the urine early and rapidly and will be reliable noninvasive urinary biomarkers, providing the tools for a more reliable stratification of UPJO patients. MATERIALS AND METHODS: We performed a prospective cohort study at Connecticut Children's Medical Center. Bladder urine samples from 12 UPJO patients were obtained prior to surgical intervention. Control urine samples were collected from healthy pediatric patients presenting with primary nocturnal enuresis. We determined levels of NGAL, KIM-1 (previously identified biomarkers), CD10, CD13, and CD26 (potentially novel biomarkers) by ELISA in control and experimental urine samples. Urinary creatinine levels were used to normalize the urinary protein levels measured by ELISA. RESULTS: Each of the proximal tubule proteins outperformed the previously published biomarkers. No differences in urinary NGAL and KIM-1 levels were observed between control and obstructed patients (p = 0.932 and p = 0.799, respectively). However, levels of CD10, CD13, and CD26 were significantly higher in the voided urine of obstructed individuals when compared with controls (p = 0.002, p = 0.024, and p = 0.007, respectively) (Figure). CONCLUSIONS: Targeted identification of reliable, noninvasive biomarkers of renal injury is critical to aid in diagnosing patients at risk, guiding therapeutic decisions and monitoring treatment efficacy. Proximal tubule brush border proteins are reliably detected in the urine of obstructed patients and may be more effective at predicting UPJO.


Assuntos
Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Hidronefrose/urina , Lipocalina-2/urina , Obstrução Ureteral/urina , Biomarcadores/urina , Criança , Pré-Escolar , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Hidronefrose/diagnóstico , Hidronefrose/etiologia , Lactente , Masculino , Projetos Piloto , Prognóstico , Estudos Prospectivos , Obstrução Ureteral/complicações , Obstrução Ureteral/diagnóstico , Bexiga Urinária/fisiopatologia
17.
J Pharmacol Exp Ther ; 354(3): 261-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26105954

RESUMO

The bioactive lipid sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) play critical roles in many pathologic processes, including cancer. The S1P axis has become a bona fide therapeutic target in cancer. JTE-013 [N-​(2,​6-​dichloro-​4-​pyridinyl)-​2-​[1,​3-​dimethyl-​4-​(1-​methylethyl)-​1H-​pyrazolo[3,​4-​b]pyridin-​6-​yl]-​hydrazinecarboxamide], a known S1P2 antagonist, suffers from instability in vivo. Structurally modified, more potent, and stable S1P2 inhibitors would be desirable pharmacological tools. One of the JTE-013 derivatives, AB1 [N-(1H-4-isopropyl-1-allyl-3-methylpyrazolo[3,4-b]pyridine-6-yl)-amino-N'-(2,6-dichloropyridine-4-yl) urea], exhibited improved S1P2 antagonism compared with JTE-013. Intravenous pharmacokinetics indicated enhanced stability or slower clearance of AB1 in vivo. Migration assays in glioblastoma showed that AB1 was slightly more effective than JTE-013 in blocking S1P2-mediated inhibition of cell migration. Functional studies in the neuroblastoma (NB) cell line SK-N-AS showed that AB1 displayed potency at least equivalent to JTE-013 in affecting signaling molecules downstream of S1P2. Similarly, AB1 inhibition of the growth of SK-N-AS tumor xenografts was improved compared with JTE-013. Cell viability assays excluded that this enhanced AB1 effect is caused by inhibition of cancer cell survival. Both JTE-013 and AB1 trended to inhibit (C-C motif) ligand 2 expression and were able to significantly inhibit subsequent tumor-associated macrophage infiltration in NB xenografts. Interestingly, AB1 was more effective than JTE-013 in inhibiting the expression of the profibrotic mediator connective tissue growth factor. The terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling assay and cleaved caspase-3 detection further demonstrated that apoptosis was increased in AB1-treated NB xenografts compared with JTE-013. Overall, the modification of JTE-013 to produce the AB1 compound improved potency, intravenous pharmacokinetics, cellular activity, and antitumor activity in NB and may have enhanced clinical and experimental applicability.


Assuntos
Antineoplásicos/farmacologia , Clorambucila/análogos & derivados , Neuroblastoma/tratamento farmacológico , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato
18.
J Immunol ; 194(9): 4466-76, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801433

RESUMO

Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5(+) early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13(KO) dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13(KO) mice showed significantly enhanced IFNß-mediated signal transduction via JAK-STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation.


Assuntos
Antígenos CD13/metabolismo , Endocitose , Inflamação/imunologia , Inflamação/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos CD13/genética , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Expressão Gênica , Inflamação/genética , Fator Regulador 3 de Interferon/metabolismo , Isquemia/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Nitritos/metabolismo , Ligação Proteica , Transporte Proteico , Baço/imunologia , Baço/metabolismo
19.
J Urol ; 191(5 Suppl): 1508-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24679864

RESUMO

PURPOSE: The S1P signaling pathway represents an important potential target for the modulation of tissue inflammation/injury. The immunomodulator FTY720, also known as fingolimod, is a potent agonist for multiple S1P receptors that was approved by the Food and Drug Administration to treat multiple sclerosis. We examined the therapeutic role of FTY720 for renal injury secondary to unilateral ureteral obstruction. MATERIALS AND METHODS: CB57BL/6 mice underwent a sham procedure or unilateral ureteral obstruction and were treated with FTY720 by gavage for 1, 3 and 5 days. Control groups received vehicle. Ligated and unligated renal tissue was examined for histopathological changes, inflammatory and fibrotic markers, TGF-ß1, α-SMA, and macrophage infiltration by Western blot and immunohistochemistry. Proinflammatory and profibrotic cytokines were profiled by quantitative reverse transcriptase-polymerase chain reaction. RESULTS: Pathological evaluation revealed that FTY720 treatment resulted in a significant reduction in inflammatory infiltration in obstructed kidneys compared to controls. Immunohistochemical and Western blot showed that TGF-ß1 and α-SMA protein levels were similarly decreased, as was macrophage infiltration into the renal interstitial space, compared to untreated mice. In agreement with these observations quantitative reverse transcriptase-polymerase chain reaction revealed that inflammatory and fibrotic cytokines (MCP-1, IL-1ß, CXCL1, TNF-α and TGF-ß1) were also significantly decreased in the FTY720 group. CONCLUSIONS: This study suggests that in a murine ureteral obstruction model FTY720 significantly inhibited the production of inflammatory cytokines and factors regulating interstitial fibrosis and extracellular matrix accumulation. These findings were associated with decreased evidence of renal injury on pathological examination, suggesting that FTY720 or related compounds may be valuable modulators of obstruction induced renal injury.


Assuntos
Imunossupressores/uso terapêutico , Inflamação/prevenção & controle , Rim/patologia , Propilenoglicóis/uso terapêutico , Esfingosina/análogos & derivados , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Fibrose , Cloridrato de Fingolimode , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esfingosina/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
20.
Immunology ; 142(4): 636-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24627994

RESUMO

CD13/Aminopeptidase N is a transmembrane metalloproteinase that is expressed in many tissues where it regulates various cellular functions. In inflammation, CD13 is expressed on myeloid cells, is up-regulated on endothelial cells at sites of inflammation and mediates monocyte/endothelial adhesion by homotypic interactions. In animal models the lack of CD13 alters the profiles of infiltrating inflammatory cells at sites of ischaemic injury. Here, we found that CD13 expression is enriched specifically on the pro-inflammatory subset of monocytes, suggesting that CD13 may regulate trafficking and function of specific subsets of immune cells. To further dissect the mechanisms regulating CD13-dependent trafficking we used the murine model of thioglycollate-induced sterile peritonitis. Peritoneal monocytes, macrophages and dendritic cells were significantly decreased in inflammatory exudates from global CD13(KO) animals when compared with wild-type controls. Furthermore, adoptive transfer of wild-type and CD13(KO) primary myeloid cells, or wild-type myeloid cells pre-treated with CD13-blocking antibodies into thioglycollate-challenged wild-type recipients demonstrated fewer CD13(KO) or treated cells in the lavage, suggesting that CD13 expression confers a competitive advantage in trafficking. Similarly, both wild-type and CD13(KO) cells were reduced in infiltrates in CD13(KO) recipients, confirming that both monocytic and endothelial CD13 contribute to trafficking. Finally, murine monocyte cell lines expressing mouse/human chimeric CD13 molecules demonstrated that the C-terminal domain of the protein mediates CD13 adhesion. Therefore, this work verifies that the altered inflammatory trafficking in CD13(KO) mice is the result of aberrant myeloid cell subset trafficking and further defines the molecular mechanisms underlying this regulation.


Assuntos
Antígenos CD13/imunologia , Movimento Celular/imunologia , Macrófagos Peritoneais/imunologia , Monócitos/imunologia , Animais , Antígenos CD13/genética , Adesão Celular/genética , Adesão Celular/imunologia , Movimento Celular/genética , Humanos , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Monócitos/citologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...