Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(42): 26029-26036, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479444

RESUMO

We developed and optimized surface-enhanced Raman spectrometry (SERS) methods for trace analysis of explosive vapour and particles using a hand-held Raman spectrometer in the field. At first, limits of detection (LODs) using SERS methods based on a colloidal suspension of gold nanoparticles were measured under alkaline conditions and are as follows: pentaerythritol tetranitrate (PETN) (1.5 × 10-6 M, 6.9 ng), 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), 8.1 × 10-6 M, 35 ng; urea nitrate (UN), 9.2 × 10-4 M, 165 ng; 2,4,6-trinitrotoluene (TNT), 1.1 × 10-7 M, 0.35 ng. We developed SERS substrates that demonstrate the wide applicability of this technique for use in the field for explosive vapour and particles adsorbed on a surface based on Au nanoparticles that were optimal for the detection of the target materials in solution. Au nanoparticles were modified onto quartz fibres or a polyurethane sponge for vapour/particles detection. SERS detection of vapours of 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) was shown by sampling vapours onto Au-modified quartz fibres followed by hand-held Raman analysis with estimated minimum detection levels of 3.6 ng and 54 ng, respectively. The detection of 2,4-DNT using sponge-based SERS decorated with Au nanoparticles was also demonstrated; however, the sensitivity was lower than that observed using quartz fibres. The detection of TNT on a surface was performed by utilizing quartz-fibres precoated with alumina and modified with Au nanoparticles, and the detection of 10 µg (0.53 µg cm-2) of TNT was demonstrated.

2.
Analyst ; 145(19): 6334-6341, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32716417

RESUMO

A sensitive surface-enhanced Raman spectroscopy (SERS) substrate was developed to enable hand-held Raman spectrometers to detect gas-phase VX and HD. The substrate comprised Au nanoparticles modified onto quartz fibres. Limits of detection (LOD) of 0.008 µg L-1 and 0.054 µg L-1 were achieved for VX and HD, respectively. Gas-phase experiments were performed using a homemade gas-phase flow system inside a climatic chamber at 25 °C and 50% relative humidity. Preliminary experiments were conducted using VX and HD in solution with Au and Ag nanoparticle colloidal suspensions. We developed and optimized several SERS methods for detection of VX and HD in solution. Gold nanoparticles were optimal for detection of VX and HD and were modified onto quartz fibres for gas-phase detection. The LODs for HD and VX detection in solution were 1.8 × 10-3 µg mL-1 (1.1 × 10-8 M) and 2.5 × 10-3 µg mL-1 (9.3 × 10-9 M), respectively. This study demonstrates that integration of SERS substrates with hand-held Raman spectrometers expands the applicability of Raman technology to homeland security, as reflected by increased sensitivity and gas-phase detection capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...