Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 104(5): 1251-1268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989852

RESUMO

Ethylene signaling appears critical for grape bud dormancy release. We therefore focused on identification and characterization of potential downstream targets and events, assuming that they participate in the regulation of dormancy release. Because ethylene responding factors (ERF) are natural candidates for targets of ethylene signaling, we initially characterized the behavior of two VvERF-VIIs, which we identified within a gene set induced by dormancy release stimuli. As expected, these VvERF-VIIs are localized within the nucleus, and are stabilized upon decreases in oxygen availability within the dormant buds. Less expected, the proteins are also stabilized upon hydrogen cyanamide (HC) application under normoxic conditions, and their levels peak at deepest dormancy under vineyard conditions. We proceeded to catalog the response of all bud-expressed ERFs, and identified additional ERFs that respond similarly to ethylene, HC, azide and hypoxia. We also identified a core set of genes that are similarly affected by treatment with ethylene and with various dormancy release stimuli. Interestingly, the functional annotations of this core set center around response to energy crisis and renewal of energy resources via autophagy-mediated catabolism. Because ERF-VIIs are stabilized under energy shortage and reshape cell metabolism to allow energy regeneration, we propose that: (i) the availability of VvERF-VIIs is a consequence of an energy crisis within the bud; (ii) VvERF-VIIs function as part of an energy-regenerating mechanism, which activates anaerobic metabolism and autophagy-mediated macromolecule catabolism; and (iii) activation of catabolism serves as the mandatory switch and the driving force for activation of the growth-inhibited meristem during bud-break.


Assuntos
Etilenos/metabolismo , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Vitis/fisiologia , Cianamida/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipóxia/metabolismo , Dormência de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Estações do Ano , Transdução de Sinais , Azida Sódica/farmacologia , Nicotiana/genética , Vitis/efeitos dos fármacos
2.
Bioinformatics ; 33(13): 2053-2055, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334165

RESUMO

SUMMARY: A pre-requisite to clustering noisy data, such as gene-expression data, is the filtering step. As an alternative to this step, the ctsGE R-package applies a sorting step in which all of the data are divided into small groups. The groups are divided according to how the time points are related to the time-series median. Then clustering is performed separately on each group. Thus, the clustering is done in two steps. First, an expression index (i.e. a sequence of 1, -1 and 0) is defined and genes with the same index are grouped together, and then each group of genes is clustered by k-means to create subgroups. The ctsGE package also provides an interactive tool to visualize and explore the gene-expression patterns and their subclusters. ctsGE proposes a way of organizing and exploring expression data without eliminating valuable information. AVAILABILITY AND IMPLEMENTATION: Freely available as part of the Bioconductor project at https://bioconductor.org/packages/ctsGE/ . CONTACT: ron@agri.gov.il. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos
3.
BMC Plant Biol ; 15: 277, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26573148

RESUMO

BACKGROUND: Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. RESULTS: We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. CONCLUSIONS: Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and strengthen the history of mango diversity.


Assuntos
Regulação da Expressão Gênica de Plantas , Mangifera/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Células Germinativas Vegetais/metabolismo , Israel , Mangifera/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma
4.
PLoS One ; 9(2): e88998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558460

RESUMO

Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature.


Assuntos
Variação Genética , Lythraceae/genética , Fenótipo , Transcriptoma/genética , Perfilação da Expressão Gênica , Frequência do Gene , Lythraceae/anatomia & histologia , Lythraceae/metabolismo , Modelos Genéticos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
5.
J Exp Bot ; 61(1): 261-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19854800

RESUMO

Leaf senescence is a programmed developmental process governed by various endogenous and exogenous factors, such as the plant developmental stage, leaf age, phytohormone levels, darkness, and exposure to stresses. It was found that, in addition to its well-documented role in the enhancement of plant frost tolerance, overexpression of the C-repeat/dehydration responsive element binding factor 2 (CBF2) gene in Arabidopsis delayed the onset of leaf senescence and extended the life span of the plants by approximately 2 weeks. This phenomenon was exhibited both during developmental leaf senescence and during senescence of detached leaves artificially induced by either darkness or phytohormones. Transcriptome analysis using the Affymetrix ATH1 genome array revealed that overexpression of CBF2 significantly influenced the expression of 286 genes in mature leaf tissue. In addition to 30 stress-related genes, overexpression of CBF2 also affected the expression of 24 transcription factor (TF) genes, and 20 genes involved in protein metabolism, degradation, and post-translational modification. These results indicate that overexpression of CBF2 not only increases frost tolerance, but also affects other developmental processes, most likely through interactions with additional TFs and protein modification genes. The present findings shed new light on the crucial relationship between plant stress tolerance and longevity, as reported for other eukaryotic organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Senescência Celular , Longevidade/fisiologia , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Transativadores/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Senescência Celular/efeitos dos fármacos , Escuridão , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Etilenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Longevidade/efeitos dos fármacos , Modelos Biológicos , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulon/genética , Transativadores/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Plant Signal Behav ; 5(3): 296-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20037472

RESUMO

CBF1-3 (C-repeat binding factors) are transcriptional activators governing plant responses to low temperatures. Overexpression of CBF1-3 genes enhances plant frost tolerance, but also causes various pleiotropic effects regarding plant growth and development, mainly growth retardation, and delay of flowering and senescence. In a recent study, we reported that overexpression of CBF2 suppressed leaf senescence induced by the stress hormone ethylene. Here we show that overexpression of CBF2 also suppressed chlorophyll breakdown and leaf senescence induced by the phytohormones abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA), which indicates its broader role in suppressing hormone-induced leaf senescence. As previously reported for ethylene, the observed decrease in responsiveness to ABA in CBF2-overexpressing plants was specific to leaf senescence, since other responses to ABA were similar to those of wild-type plants. Transcript profiling analysis of hormone metabolism and responsive genes revealed that overexpression of CBF2 induced expression of ABA-biosynthesis and ABA-responsive genes and suppressed SA- and JA-related genes. Overall, in light of the adverse effects of CBF2 on ABA metabolism and responsiveness, on the one hand, and SA and JA metabolism and responsiveness, on the other hand, we conclude that overexpression of CBF2 suppresses hormone-induced leaf senescence by directly counteracting the hormone effects on leaf senescence and not by general suppression of their synthesis or signal transduction pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...