Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38684003

RESUMO

In this work, a relatively new class of materials, rare earth (RE) based high entropy oxides (HEO) are discussed in terms of the evolution of the oxygen vacant sites (Ov) content in their structure as the composition changes from binary to HEO using both experimental and computational tools; the composition of HEO under focus is the CeLaPrSmGdO due to the importance of ceria-related (fluorite) materials to catalysis. To unveil key features of quinary HEO structure, ceria-based binary CePrO and CeLaO compositions as well as SiO2, the latter as representative nonreducible oxide, were used and compared as supports for Ru (6 wt % loading). The role of the Ov in the HEO is highlighted for the ammonia production with particular emphasis on the N2 dissociation step (N2(ads) → Nads) over a HEO; the latter step is considered the rate controlling one in the ammonia production. Density functional theory (DFT) calculations and 18O2 transient isotopic experiments were used to probe the energy of formation, the population, and the easiness of formation for the Ov at 650 and 800 °C, whereas Synchrotron EXAFS, Raman, EPR, and XPS probed the Ce-O chemical environment at different length scales. In particular, it was found that the particular HEO composition eases the Ov formation in bulk, in medium (Raman), and in short (localized) order (EPR); more Ov population was found on the surface of the HEO compared to the binary reference oxide (CePrO). Additionally, HEO gives rise to smaller and less sharp faceted Ru particles, yet in stronger interaction with the HEO support and abundance of Ru-O-Ce entities (Raman and XPS). Ammonia production reaction at 400 °C and in the 10-50 bar range was performed over Ru/HEO, Ru/CePrO, Ru/CeLaO, and Ru/SiO2 catalysts; the Ru/HEO had superior performance at 10 bar compared to the rest of catalysts. The best performing Ru/HEO catalyst was activated under different temperatures (650 vs 800 °C) so to adjust the Ov population with the lower temperature maintaining better performance for the catalyst. DFT calculations showed that the HEO active site for N adsorption involves the Ov site adjacent to the adsorption event.

2.
ACS Appl Mater Interfaces ; 15(29): 34779-34788, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37431988

RESUMO

The rational synthesis and tailoring of metal-organic frameworks (MOFs) with multifunctional micro/nanoarchitectures have emerged as a subject of significant academic interest owing to their promising potential for utilization in advanced energy storage devices. Herein, we explored a category of three-dimensional (3D) NiCo2S4 nanospikes that have been integrated into a 1D Fe3C microarchitecture using a chemical surface transformation process. The resulting electrode materials, i.e., Fe3C@NiCo2S4 nanospikes, exhibit immense potential for utilization in high-performance hybrid supercapacitors. The nanospikes exhibit an elevated specific capacity (1894.2 F g-1 at 1 A g-1), enhanced rate capability (59%), and exceptional cycling stability (92.5% with 98.7% Coulombic efficiency) via a charge storage mechanism reminiscent of a battery. The augmented charge storage characteristics are attributed to the collaborative features of the active constituents, amplified availability of active sites inherent in the nanospikes, and the proficient redox chemical reactions of multi-metallic guest species. When using nitrogen-doped carbon nanofibers as the anode to fabricate hybrid supercapacitors, the device exhibits high energy and power densities of 62.98 Wh kg-1 and 6834 W kg-1, respectively, and shows excellent long-term cycling stability (95.4% after 5000 cycles), which affirms the significant potential of the proposed design for applications in hybrid supercapacitors. The DFT study showed the strong coupling of the oxygen from the electrolyte OH- with the metal atom of the nanostructures, resulting in high adsorption properties that facilitate the redox reaction kinetics.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36441302

RESUMO

The ever-increasing applications of Co3O4 nanoparticles (NPs) have posed a serious concern about their discharge in the aquatic environment and ecotoxic implications. Being toxic towards aquatic species, the impact of other aquatic components such as dissolved organic matter (DOM), salinity, and surfactants are not studied sufficiently for their effect on the stability and ecotoxicity of Co3O4 NPs. The present study aims at the influence of humic acid (HA) on the toxicity of Co3O4 NPs in freshwater (C. minutissima) and marine (T. suecica) microalgae under surfactants mixed medium. The measure of % reduction in biomass and photosynthetic pigment were used as toxicity endpoints. Among various tested concentrations of HA, 25 mg/L HA was found suitable to minimize the NP's toxicity with or without the presence of surfactants. Co3O4 NPs mediated reduction in biomass of C. minutissima was significantly minimized by the cumulative effect of HA with T80 (51.68 ± 4.55%) followed by CTAB (46.23 ± 5.62%) and SDS (42.60 ± 2.46%). Similarly, HA with T80 (26.93 ± 6.38%) followed by SDS (17.02 ± 6.64%) and CTAB (13.01 ± 3.81%) were found to minimize the growth inhibitory effect of Co3O4 NPs in T. suecica. The estimation of chlorophyll - a content also indicated that microalgae treated with HA could maintain their photosynthetic ability more than control even in the co-presence of surfactants. Also, the reduced toxicity of Co3O4 NPs were attributed to an increase in hydrodynamic sizes of HA-treated Co3O4 NPs in both marine media (f/2) and freshwater media (BG11) due to increased aggregation and faster sedimentation of Co3O4 NPs.

4.
J Chem Phys ; 154(23): 234706, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241270

RESUMO

Materials design from first principles enables exploration of uncharted chemical spaces. Extensive computational searches have been performed for mixed-cation ternary compounds, but mixed-anion systems are gaining increased interest as well. Central to computational discovery is the crystal structure prediction, where the trade-off between reliance on prototype structures and size limitations of unconstrained sampling has to be navigated. We approach this challenge by letting two complementary structure sampling approaches compete. We use the kinetically limited minimization approach for high-throughput unconstrained crystal structure prediction in smaller cells up to 21 atoms. On the other hand, ternary-and, more generally, multinary-systems often assume structures formed by atomic ordering on a lattice derived from a binary parent structure. Thus, we additionally sample atomic configurations on prototype lattices with cells up to 56 atoms. Using this approach, we searched 65 different charge-balanced oxide-nitride stoichiometries, including six known systems as the control sample. The convex hull analysis is performed both for the thermodynamic limit and for the case of synthesis with activated nitrogen sources. We identified 34 phases that are either on the convex hull or within a viable energy window for potentially metastable phases. We further performed structure sampling for "missing" binary nitrides whose energies are needed for the convex hull analysis. Among these, we discovered metastable Ce3N4 as a nitride analog of the tetravalent cerium oxide, which becomes stable under slightly activated nitrogen condition ΔµN > +0.07 eV. Given the outsize role of CeO2 in research and application, Ce3N4 is a potentially important discovery.

5.
Environ Sci Pollut Res Int ; 28(39): 54802-54810, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013415

RESUMO

The exposure-effect study was conducted to evaluate the effect of Co3O4 nanoparticles on Tetraselmis suecica. The growth suppressing effect has been observed during the interaction between nanoparticles and microalgae as indicated by 72 h EC50 (effective concentration of a chemical at which 50% of its effect is observed) value (45.13±3.95 mg/L) of Co3O4 nanoparticles for Tetraselmis suecica. Decline in chlorophyll a content also indicated the compromised photosynthetic ability and physiological state of microalgae. Further biochemical investigation such as increase in extracellular LDH (lactate dehydrogenase) level, ROS (reactive oxygen species), and levels of membrane lipid peroxidation in treated samples signifies the compromised cellular health and membrane disintegration caused by nanoparticles. Parallel to this, the cell entrapment, membrane damage, and attachment of nanoparticles on cell surface were also visualized by SEM-EDX (scanning electron microscope-energy dispersive X-ray) microscopy. The overall results of this study clearly indicated that Co3O4 nanoparticles might have toxic effects on growth of marine microalgae and other aquatic life forms as well. Hence, release of Co3O4 nanoparticles in aquatic ecosystem and resulting ecotoxic effect should be broadly addressed.


Assuntos
Microalgas , Nanopartículas , Clorofila A , Ecossistema , Microscopia , Nanopartículas/toxicidade
6.
Aquat Toxicol ; 224: 105498, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32402915

RESUMO

The current study focuses on the ecotoxicity of cobalt oxide nanoparticles (Co3O4 NPs) in the aquatic environment towards freshwater microalgae, Chlorella minutissima. The interaction of Co3O4 NPs with microalgae shows the growth suppressing effect. The 72 h EC 50 (effective concentration of a chemical having 50% of its impact) values of Co3O4 NPs for C. minutissima was 38.16 ± 1.99 mg/L. The decline in chlorophyll a content and increase in reactive oxygen species (ROS) also indicated the compromised physiological state of microalgae. An increased LDH (lactate dehydrogenase) level in treated samples suggests membrane disintegration by Co3O4 NPs. Light microscopy, scanning electron microscopy (SEM) and Energy Dispersive X-Ray-Scanning electron microscopy (EDX-SEM) further confirm cell entrapment and deposition of Co3O4 NPs on the cell surface. Cellular internalization of NPs, as shown by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), also contributes towards the toxicity of NPs. The findings suggest the role of extracellular as well as intracellular nanoparticles (NPs) in exerting a toxic effect on the C. minutissima.


Assuntos
Chlorella/efeitos dos fármacos , Cobalto/toxicidade , Água Doce/química , Nanopartículas Metálicas/toxicidade , Microalgas/efeitos dos fármacos , Óxidos/toxicidade , Poluentes Químicos da Água/toxicidade , Chlorella/metabolismo , Clorofila A/metabolismo , Cobalto/metabolismo , Microalgas/metabolismo , Microscopia Eletrônica de Varredura , Óxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Sci Adv ; 4(6): eaar5832, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29868642

RESUMO

Heusler compounds are a ripe platform for discovery and manipulation of emergent properties in topological and magnetic heterostructures. In these applications, the surfaces and interfaces are critical to performance; however, little is known about the atomic-scale structure of Heusler surfaces and interfaces or why they reconstruct. Using a combination of molecular beam epitaxy, core-level and angle-resolved photoemission, scanning tunneling microscopy, and density functional theory, we map the phase diagram and determine the atomic and electronic structures for several surface reconstructions of CoTiSb (001), a prototypical semiconducting half-Heusler. At low Sb coverage, the surface is characterized by Sb-Sb dimers and Ti vacancies, while, at high Sb coverage, an adlayer of Sb forms. The driving forces for reconstruction are charge neutrality and minimizing the number of Sb dangling bonds, which form metallic surface states within the bulk bandgap. We develop a simple electron counting model that explains the atomic and electronic structure, as benchmarked against experiments and first-principles calculations. We then apply the model to explain previous experimental observations at other half-Heusler surfaces, including the topological semimetal PtLuSb and the half-metallic ferromagnet NiMnSb. The model provides a simple framework for understanding and predicting the surface structure and properties of these novel quantum materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...