Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738500

RESUMO

Analytical expressions for the low-field mobility of charge carrier gases with three-(3D), two-(2D) and one-(1D) dimensionalities are obtained. Multi-ion ionized impurities scattering, acoustic and polar optic phonons are considered as scattering mechanisms. The calculated values of mobility are compared to known experimental data for bulk (3D) n-and p-type wurtzite, n-type zinc-blende GaN crystals and low dimensional (2D and 1D) ternary GaAlN compounds. The resulting analytical expressions give the dependences of mobility on dimensionality of charge carrier gas, its density, effective mass, temperature and confining dimensions. A comparison of the experimental and calculated temperature dependences of the mobility in bulk GaN crystals (3D) and in AlGaN/GaN nanowires (1D) shows that the mobility atT>100Kis determined by the scattering of charge carriers by polar optical phonons with an energy of 91.2 meV. The temperature dependences of mobility in Al0.25Ga0.75N/GaN heterostructures (2D) atT>100Kare in consistent with experiment for electron scattering by polar optical phonons with a noticeably higher energy of 160 meV. We associate this fact with the heterointerface, which according to well-known theoretical studies can change both the strength of electron polar optical phonons scattering and the energy of the phonons.

2.
J Phys Condens Matter ; 35(47)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646378

RESUMO

Analytical expressions are obtained for the low-field mobility in semiconductors for scattering of three-dimensional (3D), two-dimensional (2D), and one-dimensional (1D) charged carriers by bulk plasmons. The consideration is based on the quantum kinetic equation and model distribution function in form of a shifted Fermi distribution and includes calculations of the dielectric function of 3D, 2D and 1D carriers in the random phase approximation. The resulting analytical expressions give dependences of the plasmon limited mobility on the dimensionality of charge carrier system, their density, effective mass, temperature and confining dimensions. The plasmon limited mobility decreases as the dimensionality of the electron gas D decreases. The physical reason for this is an increase in the absolute value of the cutoff vector with a decrease in D. Comparison of our calculations with known experimental data shows that relative contribution of the electron-plasmon scattering to total mobility reaches a maximum in the temperature range 10-100 K and can be a few percent in bulk crystals, ten of percent in quantum wells, and is close to the experimental values in nanowires. A noticeable effect of the scattering 3D, 2D and 1D electrons by bulk plasmons on mobility is expected in semiconductors with a sufficiently high mobility of more than 105cm2V-1s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...