Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 5(1): bpaa003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395632

RESUMO

The CRISPR/Cas system has recently emerged as a powerful tool to engineer the genome of an organism. The system is adopted from bacteria where it confers immunity against invading foreign DNA. This work reports the first successful use of the CRISPR/Cas system in Caenorhabditis briggsae (a cousin of the well-known nematode C. elegans), to generate mutations via non-homologous end joining. We recovered deletion alleles of several conserved genes by microinjecting plasmids that express Cas9 endonuclease and an engineered CRISPR RNA corresponding to the DNA sequence to be cleaved. Evidence for somatic mutations and off-target mutations are also reported. Our approach allows for the generation of loss-of-function mutations in C. briggsae genes thereby facilitating a comparative study of gene function.

2.
Mol Biol Evol ; 37(5): 1350-1361, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960924

RESUMO

Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/metabolismo , Feminino , Histonas/metabolismo , Proteínas Nucleares/genética , Vulva/crescimento & desenvolvimento
3.
Evol Dev ; 17(1): 34-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25627712

RESUMO

Studies of vulval development in the nematode C. elegans have identified many genes that are involved in cell division and differentiation processes. Some of these encode components of conserved signal transduction pathways mediated by EGF, Notch, and Wnt. To understand how developmental mechanisms change during evolution, we are doing a comparative analysis of vulva formation in C. briggsae, a species that is closely related to C. elegans. Here, we report 14 mutations in 7 Multivulva (Muv) genes in C. briggsae that inhibit inappropriate division of vulval precursors. We have developed a new efficient and cost-effective gene mapping method to localize Muv mutations to small genetic intervals on chromosomes, thus facilitating cloning and functional studies. We demonstrate the utility of our method by determining molecular identities of three of the Muv genes that include orthologs of Cel-lin-1 (ETS) and Cel-lin-31 (Winged-Helix) of the EGF-Ras pathway and Cel-pry-1 (Axin), of the Wnt pathway. The remaining four genes reside in regions that lack orthologs of known C. elegans Muv genes. Inhibitor studies demonstrate that the Muv phenotype of all four new genes is dependent on the activity of the EGF pathway kinase, MEK. One of these, Cbr-lin(gu167), shows modest increase in the expression of Cbr-lin-3/EGF compared to wild type. These results argue that while Cbr-lin(gu167) may act upstream of Cbr-lin-3/EGF, the other three genes influence the EGF pathway downstream or in parallel to Cbr-lin-3. Overall, our findings demonstrate that the genetic program underlying a conserved developmental process includes both conserved and divergent functional contributions.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Fator de Crescimento Epidérmico/metabolismo , Transdução de Sinais , Animais , Caenorhabditis/classificação , Caenorhabditis/metabolismo , Feminino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Vulva/citologia , Vulva/embriologia , Vulva/metabolismo
4.
G3 (Bethesda) ; 2(12): 1625-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275885

RESUMO

The nematode Caenorhabditis briggsae is an excellent model organism for the comparative analysis of gene function and developmental mechanisms. To study the evolutionary conservation and divergence of genetic pathways mediating vulva formation, we screened for mutations in C. briggsae that cause the egg-laying defective (Egl) phenotype. Here, we report the characterization of 13 genes, including three that are orthologs of Caenorhabditis elegans unc-84 (SUN domain), lin-39 (Dfd/Scr-related homeobox), and lin-11 (LIM homeobox). Based on the morphology and cell fate changes, the mutants were placed into four different categories. Class 1 animals have normal-looking vulva and vulva-uterine connections, indicating defects in other components of the egg-laying system. Class 2 animals frequently lack some or all of the vulval precursor cells (VPCs) due to defects in the migration of P-cell nuclei into the ventral hypodermal region. Class 3 animals show inappropriate fusion of VPCs to the hypodermal syncytium, leading to a reduced number of vulval progeny. Finally, class 4 animals exhibit abnormal vulval invagination and morphology. Interestingly, we did not find mutations that affect VPC induction and fates. Our work is the first study involving the characterization of genes in C. briggsae vulva formation, and it offers a basis for future investigations of these genes in C. elegans.


Assuntos
Caenorhabditis/genética , Genoma de Inseto , Vulva/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Ligação Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Temperatura , Vulva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...