Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(16): 162501, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723594

RESUMO

We report an improved measurement of the free neutron lifetime τ_{n} using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38×10^{6} surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ_{n} from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ_{n} measurements and by performing a global likelihood fit to all data while self-consistently incorporating the ß-decay lifetime. Both techniques achieve consistent results and find a value τ_{n}=877.75±0.28_{stat}+0.22/-0.16_{syst} s. With this sensitivity, neutron lifetime experiments now directly address the impact of recent refinements in our understanding of the standard model for neutron decay.

2.
Phys Rev C ; 100(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-35005330

RESUMO

Neutron spin rotation is expected from quark-quark weak interactions in the standard model, which induce weak interactions among nucleons that violate parity. We present the results from an experiment searching for the effect of parity violation via the spin rotation of polarized neutrons in a liquid 4He medium. The value for the neutron spin rotation angle per unit length in 4He, d ϕ / d z = [ + 2.1 ± 8.3 (stat.) - 0.2 + 2.9 (sys.) ] × 10 - 7 rad/m, is consistent with zero. The result agrees with the best current theoretical estimates of the size of nucleon-nucleon weak amplitudes from other experiments and with the expectations from recent theoretical approaches to weak nucleon-nucleon interactions. In this paper we review the theoretical status of parity violation in the n → + 4He system and discuss details of the data analysis leading to the quoted result. Analysis tools are presented that quantify systematic uncertainties in this measurement and that are expected to be essential for future measurements.

3.
Science ; 360(6389): 627-632, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29731449

RESUMO

The precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/-0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.

4.
Rev Sci Instrum ; 88(5): 053508, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571423

RESUMO

In this paper, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. An active detector that can be lowered into the trap has been used to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. In addition, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

5.
Rev Sci Instrum ; 86(5): 055101, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026552

RESUMO

We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.

6.
Rev Sci Instrum ; 84(1): 013304, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387639

RESUMO

In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of ~1500 cm(3).

7.
J Res Natl Inst Stand Technol ; 110(3): 195-203, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308121

RESUMO

The NPDGamma experiment will measure the parity-violating directional gamma ray asymmetry A γ in the reaction [Formula: see text]. Ultimately, this will constitute the first measurement in the neutron-proton system that is sensitive enough to challenge modern theories of nuclear parity violation, providing a theoretically clean determination of the weak pion-nucleon coupling. A new beam-line at the Los Alamos Neutron Science Center (LANSCE) delivers pulsed cold neutrons to the apparatus, where they are polarized by transmission through a large volume polarized (3)He spin filter and captured in a liquid para-hydrogen target. The 2.2 MeV gamma rays from the capture reaction are detected in an array of CsI(Tl) scintillators read out by vacuum photodiodes operated in current mode. We will complete commissioning of the apparatus and carry out a first measurement at LANSCE in 2004-05, which would provide a statistics-limited result for A γ accurate to a standard uncertainty of ±5 × 10(-8) level or better, improving on existing measurements in the neutron-proton system by a factor of 4. Plans to move the experiment to a reactor facility, where the greater flux would enable us to make a measurement with a standard uncertainty of ±1 × 10(-8), are actively being pursued for the longer term.

8.
J Res Natl Inst Stand Technol ; 110(3): 215-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308124

RESUMO

The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

9.
J Res Natl Inst Stand Technol ; 110(3): 145-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308111

RESUMO

The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

10.
J Res Natl Inst Stand Technol ; 110(3): 225-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308126

RESUMO

Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

11.
J Res Natl Inst Stand Technol ; 110(4): 485-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308172

RESUMO

We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...