Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293528

RESUMO

Lipopolysaccharides (LPSs) are microbiome-derived glycolipids that are among the most potent pro-inflammatory neurotoxins known. In Homo sapiens, the major sources of LPSs are gastrointestinal (GI)-tract-resident facultative anaerobic Gram-negative bacilli, including Bacteroides fragilis and Escherichia coli. LPSs have been abundantly detected in aged human brain by multiple independent research investigators, and an increased abundance of LPSs around and within Alzheimer's disease (AD)-affected neurons has been found. Microbiome-generated LPSs and other endotoxins cross GI-tract biophysiological barriers into the systemic circulation and across the blood-brain barrier into the brain, a pathological process that increases during aging and in vascular disorders, including 'leaky gut syndrome'. Further evidence indicates that LPSs up-regulate pro-inflammatory transcription factor complex NF-kB (p50/p65) and subsequently a set of NF-kB-sensitive microRNAs, including miRNA-30b, miRNA-34a, miRNA-146a and miRNA-155. These up-regulated miRNAs in turn down-regulate a family of neurodegeneration-associated messenger RNA (mRNA) targets, including the mRNA encoding the neuron-specific neurofilament light (NF-L) chain protein. While NF-L has been reported to be up-regulated in peripheral biofluids in AD and other progressive and lethal pro-inflammatory neurodegenerative disorders, NF-L is significantly down-regulated within neocortical neurons, and this may account for neuronal atrophy, loss of axonal caliber and alterations in neuronal cell shape, modified synaptic architecture and network deficits in neuronal signaling capacity. This paper reviews and reveals the most current findings on the neurotoxic aspects of LPSs and how these pro-inflammatory glycolipids contribute to the biological mechanism of progressive, age-related and ultimately lethal neurodegenerative disorders. This recently discovered gut-microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a direct positive pathological link between the LPSs of GI-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic-signaling of the AD brain and stressed human brain cells in primary culture; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-mediated actions on the expression of NF-L, an abundant filamentous protein known to be important in the maintenance of neuronal and synaptic homeostasis.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Humanos , Idoso , Doença de Alzheimer/patologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Neurotoxinas , Glicolipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
2.
Front Neurol ; 13: 900048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812116

RESUMO

Microbiome-derived Gram-negative bacterial lipopolysaccharide (LPS) has been shown by multiple laboratories to reside within Alzheimer's disease (AD)-affected neocortical and hippocampal neurons. LPS and other pro-inflammatory stressors strongly induce a defined set of NF-kB (p50/p65)-sensitive human microRNAs, including a brain-enriched Homo sapien microRNA-30b-5p (hsa-miRNA-30b-5p; miRNA-30b). Here we provide evidence that this neuropathology-associated miRNA, known to be upregulated in AD brain and LPS-stressed human neuronal-glial (HNG) cells in primary culture targets the neurofilament light (NF-L) chain mRNA 3'-untranslated region (3'-UTR), which is conducive to the post-transcriptional downregulation of NF-L expression observed within both AD and LPS-treated HNG cells. A deficiency of NF-L is associated with consequent atrophy of the neuronal cytoskeleton and the disruption of synaptic organization. Interestingly, miRNA-30b has previously been shown to be highly expressed in amyloid-beta (Aß) peptide-treated animal and cell models, and Aß peptides promote LPS entry into neurons. Increased miRNA-30b expression induces neuronal injury, neuron loss, neuronal inflammation, impairment of synaptic transmission, and synaptic failure in neurodegenerative disease and transgenic murine models. This gut microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a positive pathological link between the LPS of gastrointestinal (GI)-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic signaling of the AD brain and stressed brain cells; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-30b-mediated actions on the expression of NF-L, an abundant neuron-specific filament protein known to be important in the maintenance of neuronal cell shape, axonal caliber, and synaptic homeostasis.

3.
Neuropharmacology ; 210: 109032, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304172

RESUMO

Chronic inflammatory pain represents one of the largest subsets of chronic pain diagnoses, which affect nearly a quarter of individuals in the United States and cost nearly $600 billion dollars annually. Chronic pain leads to persistent sensory hypersensitivities, as well as emotional and cognitive disturbances. Evidence suggests that melanocortin 4 receptors (MC4Rs) mediate pain-signaling and pain-like behaviors via actions at various nodes in the pain-neural axis, but the field lacks a complete understanding of the potential role of MC4Rs in chronic inflammatory pain in males and females. The central amygdala (CeA) expresses high quantities of MC4R and receives pain-related information from the periphery, and in vivo CeA manipulations alter nociceptive behavior in pain-naïve and in animals with chronic pain. Here, we tested the hypothesis that MC4Rs in the CeA modulate thermal nociception and mechanical sensitivity, as well as pain avoidance, in male and female Wistar rats, using a model of chronic inflammatory pain (Complete Freud's Adjuvant; CFA). First, we report that CFA produces long-lasting hyperalgesia in adult male and female Wistar rats, and long-lasting pain avoidance in male Wistar rats. Second, we report that MC4R antagonism in the CeA reduces thermal nociception and mechanical sensitivity in male and female Wistar rats treated with CFA. Finally, we report that MC4R antagonism in the CeA reduces pain avoidance in male, and that this effect is not due to drug effects on locomotor activity. Our results indicate that a model of chronic inflammatory pain produces long-lasting increases in pain-like behaviors in adult male and female Wistar rats, and that antagonism of MC4Rs in the CeA reverses those effects.


Assuntos
Núcleo Central da Amígdala , Dor Crônica , Animais , Feminino , Hiperalgesia , Masculino , Nociceptividade , Ratos , Ratos Wistar , Receptor Tipo 4 de Melanocortina
4.
Mol Neurobiol ; 57(3): 1779, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970658

RESUMO

The Editor-in Chief of Molecular Neurobiology has retracted this article [1] at the request of the corresponding author. This is because it significantly overlaps with their previous publication [2]. Both articles report the same results and as such this article is redundant.Walter J. Lukiw, Maire E. Percy, and Zhide Fang agree to this retraction.William J.Walsh and Yuhai Zhao do not agree to this retraction. Aileen I. Pogue, Nathan M. Sharfman, Vivian Jaber, and Wenhong Li have not responded to any correspondence from the editor/publisher about this retraction. Donald R. C. McLachlan, Catherine Bergeron, Peter N. Alexandrov, and Theodore P. A. Kruck are deceased.[1] McLachlan, D.R.C., Bergeron, C., Alexandrov, P.N. et al. Mol Neurobiol (2019) 56: 1531. https://doi.org/10.1007/s12035-018-1441-x[2] McLachlan, D.R.C., Alexandrov, P.N., Walsh, W.J. et al. J Alzheimers Dis Parkinsonism (2018) 8(6): 457. https://doi.org/10.4172/2161-0460.1000457.

5.
Front Cell Neurosci ; 13: 440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636539

RESUMO

Persistent alterations in synaptic plasticity and neurotransmission are thought to underlie the heightened risk of adolescent-onset drinkers to develop alcohol use disorders in adulthood. The bed nucleus of the stria terminalis (BNST) is a compelling region to study the consequences of early alcohol, as it is innervated by cortical structures which undergo continued maturation during adolescence and is critically involved in stress and negative affect-associated relapse. In adult mice, chronic ethanol induces long-term changes in GluN2B-containing NMDA receptors (NMDARs) of the BNST. It remains unclear, however, whether the adolescent BNST is susceptible to such persistent alcohol-induced modifications and, if so, whether they are preserved into adulthood. We therefore examined the short- and long-term consequences of adolescent intermittent ethanol exposure (AIE) on NMDAR transmission and plasticity in the BNST of male and female mice. Whole-cell voltage clamp recordings revealed greater glutamatergic tone in the BNST of AIE-treated males and females relative to air-controls. This change, which corresponded to an increase in presynaptic glutamate release, resulted in altered postsynaptic NMDAR metaplasticity and enhanced GluN2B transmission in males but not females. Only AIE-treated males displayed upregulated GluN2B expression (determined by western blot analysis). While these changes did not persist into adulthood under basal conditions, exposing adult males (but not females) to acute restraint stress reinstated AIE-induced alterations in NMDAR metaplasticity and GluN2B function. These data demonstrate that adolescent alcohol exposure specifically modifies NMDARs in the male BNST, that the plastic changes to NMDARs are long-lasting, and that they can be engaged by stress.

6.
Front Cell Neurosci ; 13: 314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354434

RESUMO

Trans-synaptic neurotransmission of both electrical and neurochemical information in the central nervous system (CNS) is achieved through a highly interactive network of neuron-specific synaptic proteins that include pre-synaptic and post-synaptic elements. These elements include a family of several well-characterized integral- and trans-membrane synaptic core proteins necessary for the efficient operation of this complex signaling network, and include the pre-synaptic proteins: (i) neurexin-1 (NRXN-1); (ii) the synaptosomal-associated phosphoprotein-25 (SNAP-25); (iii) the phosphoprotein synapsin-2 (SYN-2); and the post-synaptic elements: (iv) neuroligin (NLGN), a critical cell adhesion protein; and (v) the SH3-ankyrin repeat domain, proline-rich cytoskeletal scaffolding protein SHANK3. All five of these pre- and post-synaptic proteins have been found to be significantly down-regulated in primary human neuronal-glial (HNG) cell co-cultures after exposure to Bacteroides fragilis lipopolysaccharide (BF-LPS). Interestingly, LPS has also been reported to be abundant in Alzheimer's disease (AD) affected brain cells where there are significant deficits in this same family of synaptic components. This "Perspectives" paper will review current research progress and discuss the latest findings in this research area. Overall these experimental results provide evidence (i) that gastrointestinal (GI) tract-derived Gram-negative bacterial exudates such as BF-LPS express their neurotoxicity in the CNS in part through the directed down-regulation of neuron-specific neurofilaments and synaptic signaling proteins; and (ii) that this may explain the significant alterations in immune-responses and cognitive deficits observed after bacterial-derived LPS exposure to the human CNS.

7.
Mol Neurobiol ; 56(12): 8101-8108, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31183807

RESUMO

Disruptions in multiple neurobiological pathways and neuromolecular processes have been widely implicated in the etiopathology of Alzheimer's disease (AD), a complex, progressive, and ultimately lethal neurological disorder whose current incidence, both domestically and globally, is reaching epidemic proportions. While only a few percent of all AD cases appear to have a strong genetic or familial component, the major form of this disease, known as idiopathic or sporadic AD, displays a multi-factorial pathology and represents one of the most complex and perplexing neurological disorders known. More effective and innovative pharmacological strategies for the successful intervention and management of AD might be expected: (i) to arise from strategic-treatments that simultaneously address multiple interrelated AD targets that are directed at the initiation, development, and/or propagation of this disease and (ii) those that target the "neuropathological core" of the AD process at early or upstream stages of AD. This "Perspectives paper" will review current research involving microRNA (miRNA)-mediated, messenger RNA (mRNA)-targeted gene expression pathways in sporadic AD and address the potential implementation of evolving anti-microRNA (AM) strategies in the amelioration and clinical management of AD. This novel-therapeutic approach: (i) incorporates a system involving the restoration of multiple miRNA-regulated mRNA-targets via the use of selectively-stabilized AM species; and (ii) that via implementation of synthetic AMs, the abundance of only relatively small-families of miRNAs need be modulated or neutralized to re-establish neural-homeostasis in the AD-affected brain. In doing so, these strategic approaches will jointly and interactively address multiple AD-associated processes such as the disruption of synaptic communication, defects in amyloid peptide clearance and amyloidogenesis, tau pathology, deficits in neurotrophic support, alterations in the innate immune response, and the proliferation of neuroinflammatory signaling.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Marcação de Genes/métodos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Animais , Marcação de Genes/tendências , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31179161

RESUMO

Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).

9.
Front Neurol ; 10: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792687

RESUMO

Integrating a combination of bioinformatics, microRNA microfluidic arrays, ELISA analysis, LED Northern, and transfection-luciferase reporter assay data using human neuronal-glial (HNG) cells in primary culture we have discovered a set of up-regulated microRNAs (miRNAs) linked to a small family of down-regulated messenger RNAs (mRNAs) within the superior temporal lobe neocortex (Brodmann A22) of sporadic Alzheimer's disease (AD) brain. At the level of mRNA abundance, the expression of a significant number of human brain genes found to be down-regulated in sporadic AD neocortex appears to be due to the increased abundance of a several brain-abundant inducible miRNAs. These up-regulated miRNAs-including, prominently, miRNA-34a-have complimentary RNA sequences in the 3' untranslated-region (3'-UTR) of their target-mRNAs that results in the pathological down-regulation in the expression of important brain genes. An up-regulated microRNA-34a, already implicated in age-related inflammatory-neurodegeneration-appears to down-regulate key mRNA targets involved in synaptogenesis and synaptic-structure, distinguishing neuronal deficits associated with AD neuropathology. One significantly down-regulated post-synaptic element in AD is the proline-rich SH3 and multiple-ankyrin-repeat domain SHANK3 protein. Bioinformatics, microRNA array analysis and SHANK3-mRNA-3'UTR luciferase-reporter assay confirmed the importance of miRNA-34a in the regulation of SHANK3 expression in HNG cells. This paper reports on recent studies of a miRNA-34a-up-regulation coupled to SHANK3 mRNA down-regulation in sporadic AD superior-temporal lobe compared to age-matched controls. These findings further support our hypothesis of an altered miRNA-mRNA coupled signaling network in AD, much of which is supported, and here reviewed, by recently reported experimental-findings in the scientific literature.

10.
Mol Neurobiol ; 56(2): 1531-1538, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30706368

RESUMO

With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.


Assuntos
Alumínio/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Doenças Neurodegenerativas/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/etiologia , Bancos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...