Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 183(1-2): 60-68, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566664

RESUMO

DNA double-strand break (DSB) complexity is invoked to explain the increased efficacy of high-linear energy transfer (LET) radiation. Complexity is usually defined as presence of additional lesions in the immediate proximity of the DSB. DSB-clusters represent a different level of complexity that can jeopardize processing by destabilizing chromatin in the vicinity of the cluster. DSB-clusters are generated after exposure of cells to ionizing radiation (IR), particularly high-LET radiation, and have been considered as particularly consequential in several mathematical models of IR action. Yet, experimental demonstration of their relevance to the adverse IR effects, as well as information on the mechanisms underpinning their severity as DNA lesions is lacking. We addressed this void by developing cell lines with especially designed, multiply integrated constructs modeling defined combinations of DSB-clusters through appropriately engineered I-SceI meganuclease recognition sites. Using this model system, we demonstrate efficient activation of the DNA damage response, as well as a markedly increased potential of DSB-clusters, as compared to single-DSBs, to kill cells, and cause Parp1- dependent chromosomal translocations. We propose that DSB repair relying on first line DSB-processing pathways (canonical non-homologous end joining and to some degree homologous recombination repair) is compromised within DSB clusters, presumably through the associated chromatin destabilization, leaving alternative end joining as last option and translocation formation as a natural consequence. Our observations offer a mechanistic explanation for the increased efficacy of high-LET radiation.


Assuntos
Técnicas de Cultura de Células , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Transferência Linear de Energia , Modelos Biológicos , Translocação Genética/efeitos da radiação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Clonais , Cricetulus , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Microscopia Confocal , Plasmídeos , Reação em Cadeia da Polimerase , Radiação Ionizante , Transfecção
2.
Mol Cancer Ther ; 17(10): 2206-2216, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29970481

RESUMO

Parp inhibitors (Parpi) are commonly used as single agents for the management of tumors with homologous recombination repair (HRR) deficiencies, but combination with radiotherapy (RT) is not widely considered due to the modest radiosensitization typically observed. BMN673 is one of the most recently developed Parpi and has been shown to mediate strong cell sensitization to methylating agents. Here, we explore the mechanisms of BMN673 radiosensitization to killing, aiming to combine it with RT. We demonstrate markedly stronger radiosensitization by BMN673 at concentrations substantially lower (50 nmol/L) than olaparib (3 µmol/L) or AG14361 (0.4 µmol/L) and dramatically lower as compared with second-generation inhibitors such as PJ34 (5 µmol/L). Notably, BMN673 radiosensitization peaks after surprisingly short contact times (∼1 hour) and at pharmacologically achievable concentrations in vivo BMN673 exerts a complex set of effects on DNA double-strand break (DSB) processing, including inhibition of classic nonhomologous end-joining (cNHEJ) and alternative end-joining (altEJ) pathway at high doses of ionizing radiation (IR). BMN673 enhances resection at DSB and favors HRR and altEJ at low clinically relevant IR doses. The combined outcome of these effects is an abrogation in the inherent balance of DSB processing culminating in the formation of chromosomal translocations that underpin radiosensitization. Our observations pave the way to clinical trials exploring inherent benefits in combining BMN673 with RT for the treatment of various forms of cancer. Mol Cancer Ther; 17(10); 2206-16. ©2018 AACR.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Modelos Biológicos , Radiação Ionizante , Translocação Genética/efeitos dos fármacos , Translocação Genética/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...