Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Med Iran ; 55(1): 29-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28188940

RESUMO

 Cirrhosis has been related with hyperdynamic circulation, manifesting as increased cardiac output and decreased systemic vascular resistance. In the present study we examined the cirrhosis outcome on apoptosis of rat hearts. We also tried to explore the role of nitric oxide (NO) and oxidative stress in the probable changed apoptosis of cirrhotic hearts. Twenty eight days after ligation of bile duct, heart tissues were tested for apoptosis. The extent of malondialdehyde (MDA), and the activities of catalase (CAT), glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) have been calculated in heart tissues. The cirrhotic hearts exhibited structural defects and greater apoptosis. Chronic treatment of cirrhotic rats with L-NAME, a non-selective inhibitor of NO synthase, inhibited heart structural defects and reduced apoptosis of hearts. We also showed that cirrhotic rat hearts had an enhanced level of MDA and reduced activities of CAT, GSHPx and SOD. When the animals were treated by L-NAME chronically, the MDA level reduced and activities of CAT, GSHPx and SOD augmented in cirrhotic heart. In conclusion, increased apoptosis of cirrhotic hearts probably happen due to NO overproduction and increased oxidative stress in hearts of cirrhotic rats.


Assuntos
Apoptose/fisiologia , Cardiopatias/patologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Animais , Catalase/metabolismo , Fibrose/patologia , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...