Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 229: 115925, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086884

RESUMO

Ruminant animals house a dense and diverse community of microorganisms in their rumen, an enlarged compartment in their stomach, which provides a supportive environment for the storage and microbial fermentation of ingested feeds dominated by plant materials. The rumen microbiota has acquired diverse and functionally overlapped enzymes for the degradation of plant cell wall polysaccharides. In rumen Bacteroidetes, enzymes involved in degradation are clustered into polysaccharide utilization loci to facilitate coordinated expression when target polysaccharides are available. Firmicutes use free enzymes and cellulosomes to degrade the polysaccharides. Fibrobacters either aggregate lignocellulose-degrading enzymes on their cell surface or release them into the extracellular medium in membrane vesicles, a mechanism that has proven extremely effective in the breakdown of recalcitrant cellulose. Based on current metagenomic analyses, rumen Bacteroidetes and Firmicutes are categorized as generalist microbes that can degrade a wide range of polysaccharides, while other members adapted toward specific polysaccharides. Particularly, there is ample evidence that Verrucomicrobia and Spirochaetes have evolved enzyme systems for the breakdown of complex polysaccharides such as xyloglucans, peptidoglycans, and pectin. It is concluded that diversity in degradation mechanisms is required to ensure that every component in feeds is efficiently degraded, which is key to harvesting maximum energy by host animals.


Assuntos
Metagenoma , Rúmen , Animais , Rúmen/metabolismo , Rúmen/microbiologia , Lignina , Bactérias/genética , Bactérias/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo
2.
Mol Biol Rep ; 48(2): 1707-1715, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611780

RESUMO

Saffron stigmas are widely used as food additives and as traditional medicine in Iran and many other countries. The unique taste, flavor and pharmaceutical properties of saffron stigmas are due to the presence of three apocarotenoids secondary metabolites crocin, picrocrocin and safranal. There is limited knowledge about the effect of environmental stresses on the metabolism of apocarotenoids in saffron. We analyzed the content of crocin and picrocrocin and the expression of key genes of apocarotenoid biosynthesis pathways (CsCCD2, CsCCD4, CsUGT2, CsCHY-ß and CsLCYB) in saffron plants exposed to moderate (90 mM) and high (150 mM) salt (NaCl) concentrations. Measuring ion concentrations in leaves showed an increased accumulation of Na+ and decreased uptake of K+ in salt treated compared to control plants indicating an effective salt stress. HPLC analysis of apocarotenoids revealed that crocin production was significantly halted (P < 0.05) with increasing salt concentration while picrocrocin level did not change with moderate salt but significantly dropped by high salt concentration. Real-time PCR analysis revealed a progressive decrease in transcript levels of CsUGT2 and CsLCYB genes with increasing salt concentration (P < 0.05). The expression of CsCCD2 and CsCHY-ß tolerated moderate salt concentration but significantly downregulated with high salt concentration. CsCCD4 however responded differently to salt concentration being decreased with moderate salt but increased at higher salt concentration. Our result suggested that salt stress had an adverse effect on the production of saffron apocarotenoids and it is likely influencing the quality of saffron stigma produced.


Assuntos
Carotenoides/metabolismo , Crocus/química , Crocus/metabolismo , Cicloexenos/metabolismo , Estresse Salino/genética , Terpenos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Crocus/efeitos dos fármacos , Crocus/genética , Regulação da Expressão Gênica de Plantas/genética , Glucosídeos/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo , Cloreto de Sódio/toxicidade
3.
Mol Biol Rep ; 41(6): 3897-905, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24535272

RESUMO

To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4-6 °C) and subsequent treatment for 12 h at -2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.


Assuntos
Aclimatação/genética , Proteoma/genética , Proteômica , Triticum/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Plântula/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triticum/crescimento & desenvolvimento
4.
Proteome Sci ; 10(1): 3, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243837

RESUMO

BACKGROUND: Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out. RESULTS: We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism. CONCLUSION: Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.

5.
Acta Biol Hung ; 61(1): 73-89, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20194101

RESUMO

Among the different concentrations of Thidiazuron (TDZ) and between the two media Gamborg (B5) and Murashige and Skoog (MS), the highest frequency of shoot formation could be seen in the MS medium with TDZ concentration of 4.54 microM. Among the different concentrations of Naphtalene acetic acid (NAA) and Benzyl adenine (BA) in the two aforementioned media, the maximum proliferation and rooting of saffron shoots were obtained in a B5 medium containing 2.22 microM NAA and 2.68 microM BA. Peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), esterase (EST) and polyphenoloxidase (PPO) measurements proved that all the enzymes had a similar pattern of changes, according to which their concentrations increased in the first stages of development and then decreased. The same pattern was observed for polyphenoloxidase in a B5 medium while in the MS medium a reverse pattern was observed. The enzyme concentration decreased and then increased during shoot formation. The results show the principal role of antioxidant enzymes in the complicated process of organogenesis.


Assuntos
Antioxidantes/metabolismo , Crocus/enzimologia , Isoenzimas/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/enzimologia , Catalase/metabolismo , Catecol Oxidase/metabolismo , Crocus/anatomia & histologia , Esterases/metabolismo , Peroxidase/metabolismo , Compostos de Fenilureia/metabolismo , Superóxido Dismutase/metabolismo , Tiadiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...