Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447628

RESUMO

Through wearable sensors and deep learning techniques, biomechanical analysis can reach beyond the lab for clinical and sporting applications. Transformers, a class of recent deep learning models, have become widely used in state-of-the-art artificial intelligence research due to their superior performance in various natural language processing and computer vision tasks. The performance of transformer models has not yet been investigated in biomechanics applications. In this study, we introduce a Biomechanical Multi-activity Transformer-based model, BioMAT, for the estimation of joint kinematics from streaming signals of multiple inertia measurement units (IMUs) using a publicly available dataset. This dataset includes IMU signals and the corresponding sagittal plane kinematics of the hip, knee, and ankle joints during multiple activities of daily living. We evaluated the model's performance and generalizability and compared it against a convolutional neural network long short-term model, a bidirectional long short-term model, and multi-linear regression across different ambulation tasks including level ground walking (LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA), and stair descent (SD). To investigate the effect of different activity datasets on prediction accuracy, we compared the performance of a universal model trained on all activities against task-specific models trained on individual tasks. When the models were tested on three unseen subjects' data, BioMAT outperformed the benchmark models with an average root mean square error (RMSE) of 5.5 ± 0.5°, and normalized RMSE of 6.8 ± 0.3° across all three joints and all activities. A unified BioMAT model demonstrated superior performance compared to individual task-specific models across four of five activities. The RMSE values from the universal model for LW, RA, RD, SA, and SD activities were 5.0 ± 1.5°, 6.2 ± 1.1°, 5.8 ± 1.1°, 5.3 ± 1.6°, and 5.2 ± 0.7° while these values for task-specific models were, 5.3 ± 2.1°, 6.7 ± 2.0°, 6.9 ± 2.2°, 4.9 ± 1.4°, and 5.6 ± 1.3°, respectively. Overall, BioMAT accurately estimated joint kinematics relative to previous machine learning algorithms across different activities directly from the sequence of IMUs signals instead of time-normalized gait cycle data.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos , Inteligência Artificial , Caminhada , Marcha , Articulação do Joelho
2.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502766

RESUMO

Gait analysis based on inertial sensors has become an effective method of quantifying movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to reliably predict joint mechanics directly from streams of IMU signals for various activities. These data-driven models require comprehensive and representative training datasets to be generalizable across the movement variability seen in the population at large. Bottlenecks in model development frequently occur due to the lack of sufficient training data and the significant time and resources necessary to acquire these datasets. Reliable methods to generate synthetic biomechanical training data could streamline model development and potentially improve model performance. In this study, we developed a methodology to generate synthetic kinematics and the associated predicted IMU signals using open source musculoskeletal modeling software. These synthetic data were used to train neural networks to predict three degree-of-freedom joint rotations at the hip and knee during gait either in lieu of or along with previously measured experimental gait data. The accuracy of the models' kinematic predictions was assessed using experimentally measured IMU signals and gait kinematics. Models trained using the synthetic data out-performed models using only the experimental data in five of the six rotational degrees of freedom at the hip and knee. On average, root mean square errors in joint angle predictions were improved by 38% at the hip (synthetic data RMSE: 2.3°, measured data RMSE: 4.5°) and 11% at the knee (synthetic data RMSE: 2.9°, measured data RMSE: 3.3°), when models trained solely on synthetic data were compared to measured data. When models were trained on both measured and synthetic data, root mean square errors were reduced by 54% at the hip (measured + synthetic data RMSE: 1.9°) and 45% at the knee (measured + synthetic data RMSE: 1.7°), compared to measured data alone. These findings enable future model development for different activities of clinical significance without the burden of generating large quantities of gait lab data for model training, streamlining model development, and ultimately improving model performance.


Assuntos
Aprendizado Profundo , Fenômenos Biomecânicos , Marcha , Análise da Marcha , Articulação do Joelho , Movimento
3.
Sensors (Basel) ; 20(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998329

RESUMO

Quantitative assessments of patient movement quality in osteoarthritis (OA), specifically spatiotemporal gait parameters (STGPs), can provide in-depth insight into gait patterns, activity types, and changes in mobility after total knee arthroplasty (TKA). A study was conducted to benchmark the ability of multiple deep neural network (DNN) architectures to predict 12 STGPs from inertial measurement unit (IMU) data and to identify an optimal sensor combination, which has yet to be studied for OA and TKA subjects. DNNs were trained using movement data from 29 subjects, walking at slow, normal, and fast paces and evaluated with cross-fold validation over the subjects. Optimal sensor locations were determined by comparing prediction accuracy with 15 IMU configurations (pelvis, thigh, shank, and feet). Percent error across the 12 STGPs ranged from 2.1% (stride time) to 73.7% (toe-out angle) and overall was more accurate in temporal parameters than spatial parameters. The most and least accurate sensor combinations were feet-thighs and singular pelvis, respectively. DNNs showed promising results in predicting STGPs for OA and TKA subjects based on signals from IMU sensors and overcomes the dependency on sensor locations that can hinder the design of patient monitoring systems for clinical application.


Assuntos
Artroplastia do Joelho , Aprendizado Profundo , Marcha , Osteoartrite , Humanos , Osteoartrite/fisiopatologia , Caminhada
4.
Bioengineering (Basel) ; 5(2)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29677139

RESUMO

A dynamic musculoskeletal model of the elbow joint in which muscle, ligament, and articular surface contact forces are predicted concurrently would be an ideal tool for patient-specific preoperative planning, computer-aided surgery, and rehabilitation. Existing musculoskeletal elbow joint models have limited clinical applicability because of idealizing the elbow as a mechanical hinge joint or ignoring important soft tissue (e.g., cartilage) contributions. The purpose of this study was to develop a subject-specific anatomically correct musculoskeletal elbow joint model and evaluate it based on experimental kinematics and muscle electromyography measurements. The model included three-dimensional bone geometries, a joint constrained by multiple ligament bundles, deformable contacts, and the natural oblique wrapping of ligaments. The musculoskeletal model predicted the bone kinematics reasonably accurately in three different velocity conditions. The model predicted timing and number of muscle excitations, and the normalized muscle forces were also in agreement with the experiment. The model was able to predict important in vivo parameters that are not possible to measure experimentally, such as muscle and ligament forces, and cartilage contact pressure. In addition, the developed musculoskeletal model was computationally efficient for body-level dynamic simulation. The maximum computation time was less than 30 min for our 35 s simulation. As a predictive clinical tool, the potential medical applications for this model and modeling approach are significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...