Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 173: 108382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574530

RESUMO

Research evidence shows that physical rehabilitation exercises prescribed by medical experts can assist in restoring physical function, improving life quality, and promoting independence for physically disabled individuals. In response to the absence of immediate expert feedback on performed actions, developing a Human Action Evaluation (HAE) system emerges as a valuable automated solution, addressing the need for accurate assessment of exercises and guidance during physical rehabilitation. Previous HAE systems developed for the rehabilitation exercises have focused on developing models that utilize skeleton data as input to compute a quality score for each action performed by the patient. However, existing studies have focused on improving scoring performance while often overlooking computational efficiency. In this research, we propose LightPRA (Light Physical Rehabilitation Assessment) system, an innovative architectural solution based on a Temporal Convolutional Network (TCN), which harnesses the capabilities of dilated causal Convolutional Neural Networks (CNNs). This approach efficiently captures complex temporal features and characteristics of the skeleton data with lower computational complexity, making it suitable for real-time feedback provided on resource-constrained devices such as Internet of Things (IoT) devices and Edge computing frameworks. Through empirical analysis performed on the University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD) and KInematic assessment of MOvement for remote monitoring of physical REhabilitation (KIMORE) datasets, our proposed LightPRA model demonstrates superior performance over several state-of-the-art approaches such as Spatial-Temporal Graph Convolutional Network (STGCN) and Long Short-Term Memory (LSTM)-based models in scoring human activity performance, while exhibiting lower computational cost and complexity.


Assuntos
Terapia por Exercício , Medicina , Humanos , Exercício Físico , Movimento , Redes Neurais de Computação , Compostos Radiofarmacêuticos
2.
Comput Biol Med ; 158: 106835, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019012

RESUMO

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role in regaining muscle strength and improving balance for people with different physical disabilities. However, patients attending these programs are not able to assess their action performance in the absence of a medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions for designing automatic patient's activity monitoring models. Then, improving such systems' performance to assist patients and physiotherapists has attracted wide interest of the research community. This paper provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence (AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied. Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward several suggestions for future research directions in this area.


Assuntos
Inteligência Artificial , Exercício Físico , Humanos , Visão Ocular , Monitorização Fisiológica , Esqueleto
3.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617075

RESUMO

This paper explores the feasibility of using low-resolution infrared (LRIR) image streams for human activity recognition (HAR) with potential application in e-healthcare. Two datasets based on synchronized multichannel LRIR sensors systems are considered for a comprehensive study about optimal data acquisition. A novel noise reduction technique is proposed for alleviating the effects of horizontal and vertical periodic noise in the 2D spatiotemporal activity profiles created by vectorizing and concatenating the LRIR frames. Two main analysis strategies are explored for HAR, including (1) manual feature extraction using texture-based and orthogonal-transformation-based techniques, followed by classification using support vector machine (SVM), random forest (RF), k-nearest neighbor (k-NN), and logistic regression (LR), and (2) deep neural network (DNN) strategy based on a convolutional long short-term memory (LSTM). The proposed periodic noise reduction technique showcases an increase of up to 14.15% using different models. In addition, for the first time, the optimum number of sensors, sensor layout, and distance to subjects are studied, indicating the optimum results based on a single side sensor at a close distance. Reasonable accuracies are achieved in the case of sensor displacement and robustness in detection of multiple subjects. Furthermore, the models show suitability for data collected in different environments.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Humanos , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte , Modelos Logísticos
4.
Bioimpacts ; 3(3): 141-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24163807

RESUMO

INTRODUCTION: Metastasis is a crucial aspect of cancer. Macrophage stimulating protein (MSP) is a single chain protein and can be cleaved by serum proteases. MSP has several roles in metastasis. In this in silico study, MSP as a metastatic agent was considered as a drug target. METHODS: Crystallographic structure of MSP was retrieved from protein data bank. To find a chemical inhibitor of MSP, a library of KEGG compounds was screened and 1000 shape complemented ligands were retrieved with FindSite algorithm. Molegro Virtual Docker (MVD) software was used for docking simulation of shape complemented ligands against MSP. Moldock score was used as scoring function for virtual screening and potential inhibitors with more negative binding energy were obtained. PLANS scoring function was used for revaluation of virtual screening data. RESULTS: The top found chemical had binding affinity of -183.55 based on MolDock score and equal to -66.733 PLANTs score to MSP structure. CONCLUSION: Based on pharmacophore model of potential inhibitor, this study suggests that the chemical which was found in this research and its derivate can be used for subsequent laboratory studies.

5.
J Sci Food Agric ; 93(15): 3710-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23633436

RESUMO

BACKGROUND: Visible-near infrared spectroscopy remains a method of increasing interest as a fast alternative for the evaluation of fruit quality. The success of the method is assumed to be achieved by using large sets of samples to produce robust calibration models. In this study we used representative samples of an early and a late season apple cultivar to evaluate model robustness (in terms of prediction ability and error) on the soluble solids content (SSC) and acidity prediction, in the wavelength range 400-1100 nm. RESULTS: A total of 196 middle-early season and 219 late season apples (Malus domestica Borkh.) cvs 'Aroma' and 'Holsteiner Cox' samples were used to construct spectral models for SSC and acidity. Partial least squares (PLS), ridge regression (RR) and elastic net (EN) models were used to build prediction models. Furthermore, we compared three sub-sample arrangements for forming training and test sets ('smooth fractionator', by date of measurement after harvest and random). Using the 'smooth fractionator' sampling method, fewer spectral bands (26) and elastic net resulted in improved performance for SSC models of 'Aroma' apples, with a coefficient of variation CVSSC = 13%. The model showed consistently low errors and bias (PLS/EN: R(2) cal = 0.60/0.60; SEC = 0.88/0.88°Brix; Biascal = 0.00/0.00; R(2) val = 0.33/0.44; SEP = 1.14/1.03; Biasval = 0.04/0.03). However, the prediction acidity and for SSC (CV = 5%) of the late cultivar 'Holsteiner Cox' produced inferior results as compared with 'Aroma'. CONCLUSION: It was possible to construct local SSC and acidity calibration models for early season apple cultivars with CVs of SSC and acidity around 10%. The overall model performance of these data sets also depend on the proper selection of training and test sets. The 'smooth fractionator' protocol provided an objective method for obtaining training and test sets that capture the existing variability of the fruit samples for construction of visible-NIR prediction models. The implication is that by using such 'efficient' sampling methods for obtaining an initial sample of fruit that represents the variability of the population and for sub-sampling to form training and test sets it should be possible to use relatively small sample sizes to develop spectral predictions of fruit quality. Using feature selection and elastic net appears to improve the SSC model performance in terms of R(2), RMSECV and RMSEP for 'Aroma' apples.


Assuntos
Ácidos/análise , Calibragem , Frutas/química , Malus/química , Modelos Biológicos , Estações do Ano , Ingestão de Alimentos , Frutas/normas , Humanos , Malus/classificação , Reprodutibilidade dos Testes , Solubilidade , Especificidade da Espécie , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...