Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138670

RESUMO

Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker. Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm, which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing a link between the solid-state dewetting process and surface functionalization, we demonstrate a novel, simple, and versatile method for functionalization of implant surfaces.

2.
Materials (Basel) ; 15(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888367

RESUMO

Fe-based scaffolds are of particular interest in the technology of biodegradable implants due to their high mechanical properties and biocompatibility. In the present work, using an electroexplosive Fe nanopowder and NaCl particles 100-200 µm in size as a porogen, scaffolds with a porosity of about 70 ± 0.8% were obtained. The effect of the sintering temperature on the structure, composition, and mechanical characteristics of the scaffolds was considered. The optimum parameters of the sintering process were determined, allowing us to obtain samples characterized by plastic deformation and a yield strength of up to 16.2 MPa. The degradation of the scaffolds sintered at 1000 and 1100 °C in 0.9 wt.% NaCl solution for 28 days resulted in a decrease in their strength by 23% and 17%, respectively.

3.
Materials (Basel) ; 14(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919612

RESUMO

The extreme and unconventional properties of mechanical metamaterials originate in their sophisticated internal architectures. Traditionally, the architecture of mechanical metamaterials is decided on in the design stage and cannot be altered after fabrication. However, the phenomenon of elastic instability, usually accompanied by a reconfiguration in periodic lattices, can be harnessed to alter their mechanical properties. Here, we study the behavior of mechanical metamaterials consisting of hexagonal networks embedded into a soft matrix. Using finite element analysis, we reveal that under specific conditions, such metamaterials can undergo sequential buckling at two different strain levels. While the first reconfiguration keeps the periodicity of the metamaterial intact, the secondary buckling is accompanied by the change in the global periodicity and formation of a new periodic unit cell. We reveal that the critical strains for the first and the second buckling depend on the metamaterial geometry and the ratio between elastic moduli. Moreover, we demonstrate that the buckling behavior can be further controlled by the placement of the rigid circular inclusions in the rotation centers of order 6. The observed sequential buckling in bulk metamaterials can provide additional routes to program their mechanical behavior and control the propagation of elastic waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA