Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 38: 8-18, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481312

RESUMO

Under the initial stage of muscle mechanical unloading, the skeletal muscle undergo accumulation of high-energy phosphates followed by AMP-dependent proteinkinase (AMPK) inactivation. Since AMPK is known to activate mitochondrial biogenesis, it cannot be excluded that AMPK inactivation results in oxidative potential decrease at the later stages of muscle unloading. We decided to test the role of the accumulation of high-energy phosphates in skeletal muscle fibers in the inactivation of mitochondrial biogenesis regulators at an early stage of muscle unloading. To reduce the ATP/ADP ratio, we used beta-guanidine propionic acid, and the obtained data indicating that already during the first day of simulated microgravity, the accumulation of high-energy phosphates can reduce the expression level of mRNA of the key regulator of mitochondrial biogenesis PGC-1α, the transcription factor TFAM, as well as the mitochondrial fusion regulator - mitofusin-1. A number of other parameters of mitochondrial signaling were not subject to changes at this time-point. Thus, we demonstrated the role of the ATP/ADP ratio in the inactivation of several regulators of mitochondrial biogenesis in the postural soleus muscle at an early stage of functional unloading.


Assuntos
Proteínas Quinases Ativadas por AMP , Elevação dos Membros Posteriores , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Elevação dos Membros Posteriores/fisiologia , Biogênese de Organelas , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Arch Biochem Biophys ; 743: 109647, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230367

RESUMO

Unloading of slow-twitch muscles results in increased muscle fatigue and the mechanisms of this effect are poorly studied. We aimed to analyze the role of high-energy phosphates accumulation during the first week of rat hindlimb suspension plays in a fiber-type phenotype shift towards fast-type fatigable muscle fibers. Male Wistar rats were divided into 3 groups (n = 8): C - vivarium control; 7HS - 7-day hindlimb suspension; 7HB - 7-day hindlimb suspension with intraperitoneal injection of beta-guanidine propionic acid (ß-GPA, 400 mg/kg b w). ß-GPA is a competitive inhibitor of creatine kinase and it reduces concentrations of ATP and phosphocreatine. In the 7HB group, ß-GPA treatment protected a slow-type signaling network in an unloaded soleus muscle, including MOTS-C, AMPK, PGC1 α and micro-RNA-499. These signaling effects resulted in a preserved soleus muscle fatigue resistance, slow-type muscle fibers percentage and mitochondrial DNA copy number under muscle unloading.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Ratos , Masculino , Animais , Ratos Wistar , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Estresse Oxidativo , Atrofia Muscular/metabolismo
3.
Pflugers Arch ; 474(11): 1171-1183, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931829

RESUMO

In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.


Assuntos
Actomiosina , Calpaína , Acrilatos , Actinina/metabolismo , Actomiosina/metabolismo , Animais , Calpaína/metabolismo , Conectina/metabolismo , Desmina/metabolismo , Elevação dos Membros Posteriores , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
4.
Arch Biochem Biophys ; 695: 108622, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33053365

RESUMO

The unloading of postural muscles leads to the changes in myosins heavy chains isoforms (MyHCs) mRNAs transcription pattern, that cause severe alterations of muscle functioning. Several transcription factors such as NFATc1 and TEAD1 upregulate slow MyHC mRNA transcription, and p38 MAP kinase can phosphorylate NFAT and TEAD1, causing their inactivation. However, the role p38 MAP kinase plays in MyHCs mRNAs transcription regulation in postural soleus muscle during unloading remains unclear. We aimed to investigate whether pharmacological inhibition of p38 MAPK during rat soleus unloading would prevent the unloading-induced slow-type MyHC mRNA transcription decrease by affecting calcineurin/NFATc1 or TEAD1 signaling. Male Wistar rats were randomly assigned to three groups: cage control (C), 3-day hindlimb suspended group (3HS) and 3-day hindlimb suspended group with the daily oral supplementation of 10 mg/kg p38 MAPK inhibitor VX-745 (3HS + VX-745). 3 days of hindlimb suspension caused the significant decreases of slow MyHC and slow-tonic myh7b mRNAs transcription as well as the decrease of NFATc1-dependent MCIP1.4 mRNA transcription in rat soleus muscles compared to the cage control. P38 MAP-kinase inhibition during hindlimb suspension completely prevented slow MyHC mRNA content decrease and partially prevented slow-tonic myh7b and MCIP1.4 mRNAs transcription decreases compared to the 3HS group. We also observed NFATc1 and TEAD1 myonuclear contents increases in the 3HS + VX-745 group compared to both 3HS and C groups (p < 0.05). Therefore, we found that p38 inhibition counteracts the unloading-induced slow MyHC mRNA transcription downregulation and leads to the activation of calcineurin/NFAT signaling cascade in unloaded rat soleus muscles.


Assuntos
Miosinas Cardíacas/biossíntese , Sistema de Sinalização das MAP Quinases , Músculo Esquelético/enzimologia , Cadeias Pesadas de Miosina/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Masculino , Proteínas Nucleares/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...