Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920442

RESUMO

Link prediction plays a crucial role in identifying future connections within complex networks, facilitating the analysis of network evolution across various domains such as biological networks, social networks, recommender systems, and more. Researchers have proposed various centrality measures, such as degree, clustering coefficient, betweenness, and closeness centralities, to compute similarity scores for predicting links in these networks. These centrality measures leverage both the local and global information of nodes within the network. In this study, we present a novel approach to link prediction using similarity score by utilizing average centrality measures based on local and global centralities, namely Similarity based on Average Degree (SACD), Similarity based on Average Betweenness (SACB), Similarity based on Average Closeness (SACC), and Similarity based on Average Clustering Coefficient (SACCC). Our approach involved determining centrality scores for each node, calculating the average centrality for the entire graph, and deriving similarity scores through common neighbors. We then applied centrality scores to these common neighbors and identified nodes with above average centrality. To evaluate our approach, we compared proposed measures with existing local similarity-based link prediction measures, including common neighbors, the Jaccard coefficient, Adamic-Adar, resource allocation, preferential attachment, as well as recent measures like common neighbor and the Centrality-based Parameterized Algorithm (CCPA), and keyword network link prediction (KNLP). We conducted experiments on four real-world datasets. The proposed similarity scores based on average centralities demonstrate significant improvements. We observed an average enhancement of 24% in terms of Area Under the Receiver Operating Characteristic (AUROC) compared to existing local similarity measures, and a 31% improvement over recent measures. Furthermore, we witnessed an average improvement of 49% and 51% in the Area Under Precision-Recall (AUPR) compared to existing and recent measures. Our comprehensive experiments highlight the superior performance of the proposed method.

2.
ACS Omega ; 8(50): 47367-47379, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144115

RESUMO

Osmolytes are small organic compounds accumulated at higher concentrations in the cell under various stress conditions like high temperature, high salt, high pressure, etc. Osmolytes mainly include four major classes of compounds including sugars, polyols, methylamines, and amino acids and their derivatives. In addition to their ability to maintain protein stability and folding, these osmolytes, also termed as chemical chaperones, can prevent protein misfolding and aggregation. Although being efficient protein folders and stabilizers, these osmolytes exhibit certain unavoidable limitations such as nearly molar concentrations of osmolytes being required for their effect, which is quite difficult to achieve inside a cell or in the extracellular matrix due to nonspecificity and limited permeability of the blood-brain barrier system and reduced bioavailability. These limitations can be overcome to a certain extent by using smart delivery platforms for the targeted delivery of osmolytes to the site of action. In this context, osmolyte-functionalized nanoparticles, termed nano-osmolytes, enhance the protein stabilization and chaperone efficiency of osmolytes up to 105 times in certain cases. For example, sugars, polyols, and amino acid functionalized based nano-osmolytes have shown tremendous potential in preventing protein aggregation. The enhanced potential of nano-osmolytes can be attributed to their high specificity at low concentrations, high tunability, amphiphilicity, multivalent complex formation, and efficient drug delivery system. Keeping in view the promising potential of nano-osmolytes conjugation in tailoring the osmolyte-protein interactions, as compared to their molecular forms, the present review summarizes the recent advancements of the nano-osmolytes that enhance the protein stability/folding efficiency and ability to act as artificial chaperones with increased potential to prevent protein misfolding disorders. Some of the potential nano-osmolyte aggregation inhibitors have been highlighted for large-scale screening with future applications in aggregation disorders. The synthesis of nano-osmolytes by numerous approaches and future perspectives are also highlighted.

3.
Entropy (Basel) ; 25(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761659

RESUMO

Matrix factorization is a long-established method employed for analyzing and extracting valuable insight recommendations from complex networks containing user ratings. The execution time and computational resources demanded by these algorithms pose limitations when confronted with large datasets. Community detection algorithms play a crucial role in identifying groups and communities within intricate networks. To overcome the challenge of extensive computing resources with matrix factorization techniques, we present a novel framework that utilizes the inherent community information of the rating network. Our proposed approach, named Community-Based Matrix Factorization (CBMF), has the following steps: (1) Model the rating network as a complex bipartite network. (2) Divide the network into communities. (3) Extract the rating matrices pertaining only to those communities and apply MF on these matrices in parallel. (4) Merge the predicted rating matrices belonging to communities and evaluate the root mean square error (RMSE). In our experimentation, we use basic MF, SVD++, and FANMF for matrix factorization, and the Louvain algorithm is used for community division. The experimental evaluation on six datasets shows that the proposed CBMF enhances the quality of recommendations in each case. In the MovieLens 100K dataset, RMSE has been reduced to 0.21 from 1.26 using SVD++ by dividing the network into 25 communities. A similar reduction in RMSE is observed for the datasets of FilmTrust, Jester, Wikilens, Good Books, and Cell Phone.

4.
J Basic Microbiol ; 63(3-4): 292-307, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36470670

RESUMO

Plastic is widely used in every sector due to its stability, durability, and low cost. The widespread use of plastic results in the compilation of plastic waste in the environment. The buildup of such a vast volume of plastic garbage has emerged as the primary cause of environmental pollution, including air, land, and water pollution. Plastics contain various harmful chemicals and toxic substances that can leak and adversely affect humans and other organisms. Managing this much plastic waste is a very challenging task; therefore, an appropriate technique is needed to address this problem. Various methods are used, such as chemical, physical, and biological, to degrade plastic waste. Bacterial degradation is known to be the most effective technique for the biodegradation approach to overcome this issue. Biodegradation has played a crucial role in removing these polluting wastes more efficiently and eco-friendly. The process of biodegradation involves a variety of bacteria, such as Acinetobacter baumannii, Bacillus weihenstephanensis, Pseudomonas aeruginosa, Pseudomonas fluorescens, Rhodococcus ruber, and so on. Biodegradation of plastic takes place through various biochemical pathways, including biodeterioration, biofragmentation, assimilation, and mineralization. During biodegradation, bacteria produce enzymes like esterase, cutinase, laccase, lipase, and others that break down and transform plastic polymers into microbial biomass and gases. This review aims to explain how bacteria contribute to the breakdown of plastic.


Assuntos
Bactérias , Plásticos , Humanos , Plásticos/química , Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradação Ambiental
5.
Front Mol Biosci ; 9: 964624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310589

RESUMO

Osmolytes are naturally occurring small molecular weight organic molecules, which are accumulated in large amounts in all life forms to maintain the stability of cellular proteins and hence preserve their functions during adverse environmental conditions. Trimethylamine N-oxide (TMAO) and N,N,N-trimethylglycine (betaine) are methylamine osmolytes that have been extensively studied for their diverse roles in humans and have demonstrated opposing relations with human health. These osmolytes are obtained from food and synthesized endogenously using dietary constituents like choline and carnitine. Especially, gut microbiota plays a vital role in TMAO synthesis and contributes significantly to plasma TMAO levels. The elevated plasma TMAO has been reported to be correlated with the pathogenesis of numerous human diseases, including cardiovascular disease, heart failure, kidney diseases, metabolic syndrome, etc.; Hence, TMAO has been recognized as a novel biomarker for the detection/prediction of several human diseases. In contrast, betaine acts as a methyl donor in one-carbon metabolism, maintains cellular S-adenosylmethionine levels, and protects the cells from the harmful effects of increased plasma homocysteine. Betaine also demonstrates antioxidant and anti-inflammatory activities and has a promising therapeutic value in several human diseases, including homocystinuria and fatty liver disease. The present review examines the multifarious functions of TMAO and betaine with possible molecular mechanisms towards a better understanding of their emerging and diverging functions with probable implications in the prevention, diagnosis, and treatment of human diseases.

6.
J Pharm Bioallied Sci ; 14(Suppl 1): S292-S294, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36110605

RESUMO

Introduction: Dental caries is a common oral disease that still needs to be thoroughly evaluated for understanding the pathophysiology. Hence, in our study, we evaluate the physicochemical and the peptide properties of the saliva and their role in dental caries among children. Materials and Methods: We conducted an observational in vitro study among 100 subjects of age 5-15 years. Decayed, missing, and filled surface (DMFT)/dmft was used to calculate the caries activity. The unstimulated saliva was evaluated for the peptides "LL-37, human neutrophil peptide (HNP) 1-3, and human beta-defensin-3" by ELIZA and for the "pH, buffer, and flow rate" of the saliva. The data thus obtained were analyzed to correlate caries and the salivary physiochemical and peptides using the "linear regression analysis." P < 0.05 was deliberated as significant. Results: Although no statistically significant variation was seen between low and high caries risk groups and the salivary parameters in our study, we observed a negative correlation of the salivary peptides and caries. For the salivary peptide "HNP1-3," there was a statistically significant variation. Conclusion: The salivary peptides may be carioprotective. However, further research has to be done to establish the mechanism of the action of these substances against caries.

7.
BMC Public Health ; 22(1): 1402, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869470

RESUMO

BACKGROUND: The world has been battling several vector-borne diseases since time immemorial. Socio-economic marginality, precipitation variations and human behavioral attributes play a major role in the proliferation of these diseases. Lockdown and social distancing have affected social behavioral aspects of human life and somehow impact on the spread of vector borne diseases. This article sheds light into the relationship between COVID-19 lockdown and global dengue burden with special focus on India. It also focuses on the interconnection of the COVID-19 pandemic (waves 1 and 2) and the alteration of human behavioral patterns in dengue cases. METHODS: We performed a systematic search using various resources from different platforms and websites, such as Medline; Pubmed; PAHO; WHO; CDC; ECDC; Epidemiology Unit Ministry of Health (Sri Lanka Government); NASA; NVBDCP from 2015 until 2021. We have included many factors, such as different geographical conditions (tropical climate, semitropic and arid conditions); GDP rate (developed nations, developing nations, and underdeveloped nations). We also categorized our data in order to conform to COVID-19 duration from 2019 to 2021. Data was extracted for the complete duration of 10 years (2012 to 2021) from various countries with different geographical region (arid region, semitropic/semiarid region and tropical region). RESULTS: There was a noticeable reduction in dengue cases in underdeveloped (70-85%), developing (50-90%), and developed nations (75%) in the years 2019 and 2021. The dengue cases drastically reduced by 55-65% with the advent of COVID-19 s wave in the year 2021 across the globe. CONCLUSIONS: At present, we can conclude that COVID-19 and dengue show an inverse relationship. These preliminary, data-based observations should guide clinical practice until more data are made public and basis for further medical research.


Assuntos
COVID-19 , Dengue , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Índia/epidemiologia , Pandemias/prevenção & controle
8.
Curr Pharm Biotechnol ; 23(3): 361-387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33966618

RESUMO

The coronavirus pandemic hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon identified by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs showing a broad range of anti-viral activities with different modes of actions have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, dexamethasone, tocilizumab, interferon-ß, and neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based antiviral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role and use in managing SARS-CoV-2. Thus this article is an attempt to review the current understanding of COVID- 19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.


Assuntos
COVID-19 , Pandemias , Antivirais/uso terapêutico , Humanos , Estudos Prospectivos , SARS-CoV-2 , Desenvolvimento de Vacinas
9.
Acad Emerg Med ; 24(11): 1387-1394, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28791755

RESUMO

OBJECTIVES: Desaturation leading to hypoxemia may occur during rapid sequence intubation (RSI). Apneic oxygenation (AO) was developed to prevent the occurrence of oxygen desaturation during the apnea period. The purpose of this study was to determine if the application of AO increases the average lowest oxygen saturation during RSI when compared to usual care (UC) in the emergency setting. METHODS: A randomized controlled trial was conducted at an academic, urban, Level I trauma center. All patients requiring intubation were included. Exclusion criteria were patients in cardiac or traumatic arrest or if preoxygenation was not performed. An observer, blinded to study outcomes and who was not involved in the procedure, recorded all times, while all saturations were recorded in real time by monitors on a secured server. Two-hundred patients were allocated to receive AO (n = 100) or UC (n = 100) by predetermined randomization in a 1:1 ratio. RESULTS: A total of 206 patients were enrolled. There was no difference in lowest mean oxygen saturation between the two groups (92, 95% confidence interval [CI] = 91 to 93 in AO vs. 93, 95% CI = 92 to 94 in UC; p = 0.11). CONCLUSION: There was no difference in lowest mean oxygen saturation between the two groups. The application of AO during RSI did not prevent desaturation of patients in this study population.


Assuntos
Hipóxia/prevenção & controle , Intubação Intratraqueal , Oxigenoterapia/métodos , Serviço Hospitalar de Emergência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Oxigênio/sangue , Centros de Traumatologia
10.
J Struct Biol ; 195(3): 379-386, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27368128

RESUMO

The dearth of high quality, three dimensional crystals of membrane proteins, suitable for X-ray diffraction analysis, constitutes a serious barrier to progress in structural biology. To address this challenge, we have developed a new crystallization medium that relies on the conjugation of surfactant micelles via base-pairing of complementary hydrophobic nucleosides. Base-pairs formed at the interface between micelles bring them into proximity with each other; and when the conjugated micelles contain a membrane protein, crystal nucleation centers can be stabilized, thereby promoting crystal growth. Accordingly, two hydrophobic nucleoside derivatives - deoxyguanosine (G) and deoxycytidine (C), each covalently bonded to a 10 carbon chain were synthesized and added to an aqueous solution containing octyl ß-d-thioglucopyranoside micelles. These hydrophobic nucleosides induced the formation of oil-rich globules after 2days incubation at 19°C or after a few hours in the presence of ammonium sulfate; however, phase separation was inhibited by 100mM GMP. The presence of the membrane protein bacteriorhodopsin in the conjugated - micellar dispersion resulted in the growth within the colorless globules of a variety of purple crystals, the color indicating a functional protein. On this basis, we suggest that conjugation of micelles via base-pair complementarity may provide significant assistance to the structural determination of integral membrane proteins.


Assuntos
Desoxicitidina/química , Desoxiguanosina/química , Bacteriorodopsinas/química , Pareamento de Bases , Cristalização , Cristalografia por Raios X/métodos , Micelas
11.
Scientifica (Cairo) ; 2016: 1387936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123362

RESUMO

Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis.

12.
J Clin Diagn Res ; 7(8): 1552-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24086836

RESUMO

OBJECTIVES: In India, especially in Rajasthan, people drink water which contains high level of nitrates and the possibility of finding concentrations of up to 500 mg of nitrate ions per litre of water is not unusual. Excessive use of nitrate fertilisers and herbicides results in accumulation of nitrate in plants and methemoglobinaemia in cattle as consequences of nitrate poisoning. The ingested nitrate is converted to nitrite in the digestive system and it is absorbed in blood, thus causing methemoglobinaemia. Methaemoglobinaemia is not restricted to infants alone, but it is prevalent in higher age groups also. METHODS: Therefore, an experimental study was conducted on 10 rabbits which were between three and a half months to four months of age, which had weights which ranged from 1.310 kg to 1.720 kg. Five groups A, B, C,D and E were formed, with two rabbits in each group. The control Group A was given water orally, which had 45 mg/litres of nitrate. Groups B to E (experimental groups) were administered water orally, which had concentrations of 100mg/litre, 200mg/litre, 400mg/litre and 500mg/litre of nitrate respectively, for 120 days. During experimental period, the differences in general behaviour of rabbits were noted. After this, rabbits were anaesthetised and sacrificed according to guidelines of ICMR and their livers were removed and processed for making paraffin sections,.Hematoxyllin and eosin staining was done for microscopic observations. RESULTS: During experimental period, the animals were found to be lethargic on 75(th) day. Quantity of intake of food and water was not altered in the rabbits which were undergoing experiments in different groups. Rabbits of all groups i.e. A to E showed a continuous increase in heart rate (up to 218/minute in Group E) and respiration rate (up to 84/minute in Group E) respectively. The microscopic study showed mild necrosis of hepatocytes, with infiltration of inflammatory cells in between hepatocytes. In higher groups, the liver showed bridging necrosis and portal triditis. Dilatations of central vein with eosinophilic degeneration were observed in Group E only.

13.
BMC Genomics ; 13: 368, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22857610

RESUMO

BACKGROUND: Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. RESULTS: A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. CONCLUSIONS: The inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/genética , Alelos , Animais , Sequência de Bases , Morte Súbita , Feminino , Genes de Plantas , Loci Gênicos , Pleiotropia Genética , Genótipo , Dados de Sequência Molecular , Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Síndrome , Transgenes
14.
Theor Appl Genet ; 122(4): 687-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21060987

RESUMO

Aluminum (Al) toxicity to plant roots is a major problem of acidic soils. The main chemical reaction involved is Al hydrolysis. Application of lime or nitrate fertilizers to raise soil pH reduces Al toxicity but not as economically as a plant genotypes with natural tolerance against this stress. Ammonium fertilization of crops and assimilation of ammonium (even that derived from dinitrogen) are particularly acidifying of the root zone. The aims of the present study were to find genotypes of soybean tolerant to aluminum stress and identify QTL underlying that trait. Used were recombinant inbred lines (RILs) derived from the cross of 'Essex' by 'Forrest'. RILs were grown in a greenhouse for 3 weeks and then transferred to hydroponics in a growth chamber. Root lengths (RL) were measured before and 72 h after Al treatment. RL before and after Al treatment were measured and used to calculate root tolerance index (RTI) and relative mean growth (RMG). RILs 1, 85, 40 and 83 had significant (P<0.005) tolerance to Al stress judged by RL after Al, RTI and RMG. Eleven minor but significant marker-trait associations (P<0.05) were detected using one-way ANOVA but only two major loci were significant in composite interval maps (LOD>3.0). The QTL on linkage group F (chromosome 13) was in the interval Satt160-Satt252 with a peak at 24 cM (peak LOD was 3.3). The QTL underlay 31% of trait variation and the Essex allele provided an additional 1.61 cm of root growth over 72 h in the presence of Al. The QTL on linkage group C2 (probably chromosome 4) was in the interval from Satt202 to Satt371 with a peak at 3.2 cM (peak LOD was 14.7). The QTL underlay 34% of trait variation or 1.81 cm of growth over 72 h in the presence of Al. Both loci encompassed genes implicated in citrate metabolism, a method of aluminum detoxification known to vary among soybean cultivars. Two major loci and at least nine minor loci were inferred to underlie tolerance to Al. RILs and markers may be used to select alleles that increase tolerance to soybean against Al stress.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alumínio/toxicidade , Cruzamentos Genéticos , Glycine max/efeitos dos fármacos , Glycine max/genética , Endogamia , Análise de Variância , Ligação Genética/efeitos dos fármacos , Marcadores Genéticos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...