Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 261, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537675

RESUMO

Quercetin (QUE) is a natural polyphenol known to have numerous pharmacological properties against infectious and non-infectious diseases. Azithromycin (AZ) is an antibiotic that belongs to the azalide class of antimicrobials and an antiparasitic that is known to be effective in combination with clindamycin against pyrimethamine/sulfadiazine-resistant Toxoplasma gondii tachyzoites in clinical settings. Both compounds are known to target protein synthesis and have anti-inflammatory properties. However, little is known about QUE and AZ synergistic interaction against T. gondii growth. Here, we report for the first time the effects of the combination of QUE and AZ on T. gondii growth. The 50% inhibitory concentration (IC50) for QUE at 72 h of interaction was determined to be 0.50 µM, whereas AZ gave an IC50 value of 0.66 µM at 72 h of interaction with parasites. Combination testing of QUE and AZ in a ratio of 2:1 (QUE:AZ) showed an IC50 value of 0.081 µM. Interestingly, a fractional inhibitory index value of 0.28 was observed, indicating a strong synergy. QUE was also found to upregulate the generation of reactive oxygen species and cause dysfunction of the mitochondria membrane of both intracellular and extracellular T. gondii tachyzoites. Overall, the results indicate that QUE is a novel lead capable of synergizing with AZ for inhibiting T. gondii growth and may merit future investigation in vivo for possible combination drug development.


Assuntos
Anti-Infecciosos , Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Azitromicina/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Anti-Infecciosos/farmacologia , Proliferação de Células
2.
Sci Rep ; 13(1): 8667, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248277

RESUMO

Toxoplasma gondii (T. gondii) infection continues to rise globally in humans and animals with high socioeconomic and public health challenges. Current medications used against T. gondii infection are limited in efficacy, safety, and affordability. This research was conducted to assess the higher fungi extract effect on T. gondii tachyzoites growth in vitro and possibly decipher its mechanism of action. Furthermore, we evaluated the extract's effect on human foreskin fibroblast viability. The methanol extracts of Turkey tail (TT) mushroom was tested against T. gondii tachyzoites growth using an RH-RFP type I strain that expresses red fluorescent protein throughout culture in a dose-dependent manner using a fluorescent plate reader. Similarly, we tested the effect of the extract on host cell viability. We observed that TT extract inhibited tachyzoites growth with a 50% minimum inhibitory concentration (IC50s), IC50 = 5.98 ± 1.22 µg/mL, and 50% cytotoxic concentration (CC50s), CC50 ≥ 100 µg/mL. It was discovered that TT extract induced strong mitochondria superoxide and  reactive oxygen species production and disrupted mitochondria membrane potential in T. gondii tachyzoites. Additionally, scanning electron microscopy depicted that TT extract and pyrimethamine (PY) caused a morphological deformation of tachyzoites in vitro. In conclusion, TT methanol extract made up of phytosterols, bioactive sphingolipids, peptides, phenolic acids, and lactones could be a promising source of new compounds for the future development of anti-Toxoplasma gondii drugs. Extracts were non-cytotoxic, even at higher concentrations.


Assuntos
Agaricales , Toxoplasma , Toxoplasmose , Animais , Humanos , Trametes , Metanol/farmacologia , Toxoplasmose/tratamento farmacológico
3.
Pathogens ; 10(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34578250

RESUMO

Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...