Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 195(2): 213-230, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37498623

RESUMO

Inhalation is a major route by which human exposure to substances can occur. Resources have therefore been dedicated to optimize human-relevant in vitro approaches that can accurately and efficiently predict the toxicity of inhaled chemicals for robust risk assessment and management. In this study-the IN vitro Systems to PredIct REspiratory toxicity Initiative-2 cell-based systems were used to predict the ability of chemicals to cause portal-of-entry effects on the human respiratory tract. A human bronchial epithelial cell line (BEAS-2B) and a reconstructed human tissue model (MucilAir, Epithelix) were exposed to triethoxysilane (TES) and trimethoxysilane (TMS) as vapor (mixed with N2 gas) at the air-liquid interface. Cell viability, cytotoxicity, and secretion of inflammatory markers were assessed in both cell systems and, for MucilAir tissues, morphology, barrier integrity, cilia beating frequency, and recovery after 7 days were also examined. The results show that both cell systems provide valuable information; the BEAS-2B cells were more sensitive in terms of cell viability and inflammatory markers, whereas MucilAir tissues allowed for the assessment of additional cellular effects and time points. As a proof of concept, the data were also used to calculate human equivalent concentrations. As expected, based on chemical properties and existing data, the silanes demonstrated toxicity in both systems with TMS being generally more toxic than TES. Overall, the results demonstrate that these in vitro test systems can provide valuable information relevant to predicting the likelihood of toxicity following inhalation exposure to chemicals in humans.


Assuntos
Células Epiteliais , Silanos , Humanos , Silanos/toxicidade , Silanos/metabolismo , Linhagem Celular , Brônquios
2.
Toxicol In Vitro ; 83: 105423, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35753526

RESUMO

Scientists are using in vitro methods to answer important research questions and implementing strategies to maximize the reliability and human relevance of these methods. One strategy is to replace the use of fetal bovine serum (FBS)-an undefined and variable mixture of biomolecules-in cell culture media with chemically defined or xeno-free medium. In this study, A549 cells, a human lung alveolar-like cell line commonly used in respiratory research, were transitioned from a culture medium containing FBS to media without FBS. A successful transition was determined based on analysis of cell morphology and functionality. Following transition to commercially available CnT-Prime Airway (CELLnTEC) or X-VIVO™ 10 (Lonza) medium, the cells were characterized by microscopic evaluation and calculation of doubling time. Their genotype, morphology, and functionality were assessed by monitoring the expression of gene markers for lung cell types, surfactant production, cytokine release, the presence of multilamellar bodies, and cell viability following sodium dodecyl sulphate exposure. Our results showed that A549 cells successfully transitioned to FBS-free media under submerged and air-liquid-interface conditions. Cells grown in X-VIVO™ 10 medium mimicked cellular characteristics of FBS-supplemented media while those grown in CnT-Prime Airway medium demonstrated characteristics possibly more reflective of normal human alveolar epithelial cells.


Assuntos
Técnicas de Cultura de Células , Soroalbumina Bovina , Células A549 , Técnicas de Cultura de Células/métodos , Células Cultivadas , Meios de Cultura/química , Meios de Cultura Livres de Soro , Humanos , Reprodutibilidade dos Testes
3.
Chem Res Toxicol ; 34(6): 1370-1385, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34097823

RESUMO

In vitro inhalation toxicology methods are increasingly being used for research and regulatory purposes. Although the opportunity for increased human relevance of in vitro inhalation methods compared to in vivo tests has been established and discussed, how to systematically account for variability and maximize the reliability of these in vitro methods, especially for assays that use cells cultured at an air-liquid interface (ALI), has received less attention. One tool that has been used to evaluate the robustness of in vitro test methods is cause-and-effect (C&E) analysis, a conceptual approach to analyze key sources of potential variability in a test method. These sources of variability can then be evaluated using robustness testing and potentially incorporated into in-process control measurements in the assay protocol. There are many differences among in vitro inhalation test methods including the use of different types of biological test systems, exposure platforms/conditions, substances tested, and end points, which represent a major challenge for use in regulatory testing. In this manuscript, we describe how C&E analysis can be applied using a modular approach based on the idea that shared components of different test methods (e.g., the same exposure system is used) have similar sources of variability even though other components may differ. C&E analyses of different in vitro inhalation methods revealed a common set of recommended exposure systems and biological in-process control measurements. The approach described here, when applied in conjunction with Good Laboratory Practices (GLP) criteria, should help improve the inter- and intralaboratory agreement of in vitro inhalation test results, leading to increased confidence in these methods for regulatory and research purposes.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/efeitos adversos , Ar , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Material Particulado/administração & dosagem
4.
Chem Res Toxicol ; 34(6): 1367-1369, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899460

RESUMO

A broad range of in vitro test methods have been developed given their numerous potential advantages over in vivo tests. We describe here key resources and tools to increase the reliability and reproducibility of in vitro toxicological test methods.


Assuntos
Testes de Toxicidade , Humanos
5.
Front Toxicol ; 3: 750254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295103

RESUMO

Adverse outcome pathways (AOPs) help to organize available mechanistic information related to an adverse outcome into key events (KEs) spanning all organizational levels of a biological system(s). AOPs, therefore, aid in the biological understanding of a particular pathogenesis and also help with linking exposures to eventual toxic effects. In the regulatory context, knowledge of disease mechanisms can help design testing strategies using in vitro methods that can measure or predict KEs relevant to the biological effect of interest. The AOP described here evaluates the major processes known to be involved in regulating efficient mucociliary clearance (MCC) following exposures causing oxidative stress. MCC is a key aspect of the innate immune defense against airborne pathogens and inhaled chemicals and is governed by the concerted action of its functional components, the cilia and airway surface liquid (ASL). The AOP network described here consists of sequences of KEs that culminate in the modulation of ciliary beat frequency and ASL height as well as mucus viscosity and hence, impairment of MCC, which in turn leads to decreased lung function.

7.
ACS Nano ; 14(4): 3941-3956, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167743

RESUMO

Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human primary alveolar epithelial cells, fibroblasts, and endothelial cells, with or without macrophages for predicting long-term responses to aerosols. Following thorough characterization of the model, proinflammatory and profibrotic responses based on the adverse outcome pathway concept for lung fibrosis were assessed upon repeated subchronic exposures (up to 21 days) to two types of multiwalled carbon nanotubes (MWCNTs) and silica quartz particles. We simulate occupational exposure doses for the MWCNTs (1-30 µg/cm2) using an air-liquid interface exposure device (VITROCELL Cloud) with repeated exposures over 3 weeks. Specific key events leading to lung fibrosis, such as barrier integrity and release of proinflammatory and profibrotic markers, show the responsiveness of the model. Nanocyl induced, in general, a less pronounced reaction than Mitsui-7, and the cultures with human monocyte-derived macrophages (MDMs) showed the proinflammatory response at later time points than those without MDMs. In conclusion, we present a robust alveolar model to predict inflammatory and fibrotic responses upon exposure to MWCNTs.

8.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835823

RESUMO

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose-response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.

9.
Toxicol In Vitro ; 52: 131-145, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908304

RESUMO

New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade Aguda , Administração por Inalação , Árvores de Decisões , Humanos
10.
Risk Anal ; 36(8): 1520-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27510619

RESUMO

The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article.


Assuntos
Ecotoxicologia , Saúde Ambiental , Nanoestruturas/química , Nanotecnologia/legislação & jurisprudência , Humanos , Medição de Risco , Segurança
11.
Arch Toxicol ; 90(7): 1605-22, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27215431

RESUMO

The increased production and use of multi-walled carbon nanotubes (MWCNTs) in a diverse array of consumer, medical, and industrial applications have raised concerns about potential human exposure to these materials in the workplace and ambient environments. Inhalation is a primary route of exposure to MWCNTs, and the existing data indicate that they are potentially hazardous to human health. While a 90-day rodent inhalation test (e.g., OECD Test No. 413: subchronic inhalation toxicity: 90-day study or EPA Health Effects Test Guidelines OPPTS 870.3465 90-day inhalation toxicity) is recommended by the U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics for MWCNTs (and other CNTs) if they are to be commercially produced (Godwin et al. in ACS Nano 9:3409-3417, 2015), this test is time and cost-intensive and subject to scientific and ethical concerns. As a result, there has been much interest in transitioning away from studies on animals and moving toward human-based in vitro and in silico models. However, given the multiple mechanisms of toxicity associated with subchronic exposure to inhaled MWCNTs, a battery of non-animal tests will likely be needed to evaluate the key endpoints assessed by the 90-day rodent study. Pulmonary fibrosis is an important adverse outcome related to inhalation exposure to MWCNTs and one that the non-animal approach should be able to assess. This review summarizes the state-of-the-science regarding in vivo and in vitro toxicological methods for predicting MWCNT-induced pulmonary fibrosis.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Testes de Toxicidade/métodos , Poluentes Atmosféricos/química , Células Cultivadas , Técnicas de Cocultura , Humanos , Exposição por Inalação/análise , Nanotubos de Carbono/química , Valor Preditivo dos Testes , Propriedades de Superfície
12.
Environ Sci Technol ; 50(12): 6124-45, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27177237

RESUMO

Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.


Assuntos
Ecologia , Nanoestruturas , Ecossistema , Ecotoxicologia , Meio Ambiente , Humanos
13.
Part Fibre Toxicol ; 13: 20, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108236

RESUMO

Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Barreira Alveolocapilar/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Aerossóis , Alternativas aos Testes com Animais , Animais , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/patologia , Técnicas de Cultura de Células , Células Cultivadas , Congressos como Assunto , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Exposição por Inalação , Nanotubos de Carbono/química , Tamanho da Partícula , Medição de Risco
14.
Arch Toxicol ; 90(7): 1769-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27121469

RESUMO

The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air-liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air-liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanoestruturas/toxicidade , Fibrose Pulmonar/induzido quimicamente , Testes de Toxicidade/métodos , Aerossóis , Alternativas ao Uso de Animais , Animais , Técnicas de Cultura de Células , Células Cultivadas , Desenho de Equipamento , Humanos , Pulmão/citologia , Modelos Biológicos , Nanoestruturas/administração & dosagem , Testes de Toxicidade/instrumentação
15.
Risk Anal ; 36(8): 1551-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26905487

RESUMO

This article presents a multistage framework for evaluating the strength of evidence of nanomaterial (NM) exposure characterization data to optimize the utility of in vitro testing strategies for human health risk assessment. This framework is intended to aid risk assessors in evaluating the relevance of data from in vitro tests and to optimize the development of new in vitro testing strategies. The initial stage frames the exposure scenarios of interest in advance of testing to incorporate aspects such as release points, route of exposure, biological and environmental transformations, dose metrics, and biological targets in subsequent stages. The second stage considers characterization in the context of a realistic exposure and the third stage involves designing a testing strategy based on expected exposure conditions. For the fourth and final stage, we propose a matrix approach to evaluate the strength of evidence obtained in the first three stages as a basis for determining the best combination of test conditions and analytical methods available to characterize and measure exposure based on the NM type. This approach can also be used to evaluate existing data for their relevance to the expected exposure scenario and to further develop and optimize in vitro testing strategies. Implementation of the proposed strategy will generate meaningful information on NM properties and their interaction with biological systems, based on realistic exposure scenarios, which will be cost effective and can be applied for assessing risk and making intelligent regulatory decisions regarding the use and disposal of NMs.


Assuntos
Técnicas In Vitro , Nanoestruturas/toxicidade , Humanos , Medição de Risco
16.
Nanotoxicology ; 10(1): 74-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25961858

RESUMO

Traditional in vitro toxicity experiments typically involve exposure of a mono- or co-culture of cells to nanoparticles (NPs) in static conditions with the assumption of 100% deposition (i.e. dose) of well-dispersed particles. However, cellular dose can be affected by agglomeration and the unique transport kinetics of NPs in biological media. We hypothesize that shear flow can address these issues and achieve more predictable dosage. Here, we compare the behavior of gold NPs with diameters of 5, 10 and 30 nm in static and dynamic in vitro models. We also utilize transport modeling to approximate the shear rate experienced by the cells in dynamic conditions to evaluate physiological relevance. The transport kinetics show that NP behavior is governed by both gravity and diffusion forces in static conditions and only diffusion in dynamic conditions. Our results reveal that dynamic systems are capable of producing a more predictable dose compared to static systems, which has strong implications for improving repeatability in nanotoxicity assessments.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Linhagem Celular , Difusão , Tamanho da Partícula , Resistência ao Cisalhamento
17.
Nanotoxicology ; 8(7): 718-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23848466

RESUMO

In the field of toxicology of nanomaterials, scientists have not clearly determined if the observed toxicological events are due to the nanoparticles (NPs) themselves or the dissolution of ions released into the biophysiological environment or both phenomenon participate in combination based upon their bioregional and temporal occurrence during exposure conditions. Consequently, research involving the toxicological analysis of silver NPs (Ag-NPs) has shifted towards assessment of 'nanosized' silver in comparison to its solvated 'ionic' counterpart. Current literature suggests that dissolution of ions from Ag-NPs may play a key role in toxicity; however, the present assessment methodology to separate ions from NPs still requires improvement before a definitive cause of toxicity can be determined. Recently, centrifugation-based techniques have been employed to obtain solvated ions from the NP solution, but this approach leads to NP agglomeration, making further toxicological analysis difficult to assess. Additionally, extremely small NPs are retained in the supernatant even after ultracentrifugation, leading to incomplete separation of ions from their respective NPs. To address these complex toxicology issues we applied enhanced separation techniques with the aim to study levels of ions originating from the Ag-NP using separation by a recirculating tangential flow filtration system. This system uses a unique diffusion-driven filtration method that retains large particles within the continuous flow path, while allowing the solution (ions) to pass through molecular filters by lateral diffusion separation. Use of this technique provides reproducible NP separation from their solvated ions which permits for further quantification using an inductively coupled plasma mass spectrometry or comparison use in bioassay exposures to biological systems. In this study, we thoroughly characterised NPs in biologically relevant solutions to understand the dissolution of Ag-NPs (10 and 50 nm) over time. Our results suggest that the ion dissolution from Ag-NPs is dependent on parameters such as exposure time, chemical composition and temperature of the exposure solution. Further, the well-characterised separated ionic and NP solutions were exposed to a lung epithelial cell line (A549) to evaluate the toxicity of each fraction. Results suggest that although Ag-NPs (unseparated) show concentration-dependent toxicity, dissolution of ions appears to exacerbate the toxicological effect. This finding adds data to the set of probable toxic exposure mechanisms elicited by metallic nanomaterials and provides important consideration when assessing findings of key cell function modulation.


Assuntos
Filtração/métodos , Íons/análise , Nanopartículas Metálicas/química , Prata/química , Líquidos Corporais , Meios de Cultura , Filtração/instrumentação , Concentração de Íons de Hidrogênio , Íons/química , Íons/isolamento & purificação , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Tamanho da Partícula , Prata/toxicidade , Temperatura , Água
18.
Nanoscale ; 5(9): 3747-56, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23503581

RESUMO

Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKß were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , NF-kappa B/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Humanos , Proteínas I-kappa B/metabolismo , Imunoglobulina A/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Tamanho da Partícula , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Compostos de Sulfidrila/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...