Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Reprod Sci ; 16(4): 307-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322634

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a complex genetic trait, the pathogenesis of which is governed by an interplay of genetic and epigenetic factors. However, the aetiology of PCOS is not fully understood. Aims: The objective of this study was to investigate the genetic causes of PCOS by identifying rare variants in genes implicated in its pathophysiology. Settings and Design: This was a hospital-based observational study. Materials and Methods: We used whole-exome sequencing for 52 PCOS women to identify the rare variants in genes related to PCOS pathogenesis. Subsequently, we analysed these variants using in silico prediction software to determine their functional effects. We then assessed the relationship between these variants and the clinical outcomes of the patients. Statistical Analysis Used: Student's t-test and Fisher's exact test were used to compare clinical parameters and frequency differences amongst PCOS patients with and without variants. Results: A total of four rare exonic variants in obesity- and hyperinsulinaemia-related genes including UCP1 (p.Thr227Ile), UCP2 (p.Arg88Cys), IRS1 (p.Ser892Gly) and GHRL (p.Leu72Met) were identified in eight patients. Significant differences were observed between the patients carrying variants and those without variants. PCOS patients with identified variants exhibited significantly higher average body mass index and fasting insulin levels of PCOS subjects with identified variants compared to those without variants (P < 0.05). Additionally, there were significant differences in the variant frequencies of four variants when compared to the population database (P < 0.05). Conclusion: This study shows a prevalence of rare variants in obesity and hyperinsulinaemia-related genes in a cohort of PCOS women, thereby underscoring the impact of the identified rare variants on the development of obesity and associated metabolic derangements in PCOS women.

2.
J Hum Reprod Sci ; 15(3): 240-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341008

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a common endocrinopathy whose heterogeneous genetic basis results in a variable clinical presentation. One of the main clinical features of PCOS is hyperandrogenism which occurs due to dysregulation of ovarian and adrenal steroidogenesis. Aims: This study aimed to investigate potentially pathogenic variants in steroidogenic genes associated with PCOS. Settings and Design: This was a hospital-based observational study. Materials and Methods: We recruited 51 women who presented with PCOS. Fasting blood samples were drawn from the participants and their whole-exome sequencing analysis was carried out to look for pathogenic variants involved in steroidogenic pathways. The variants were predicted for their probable deleterious effects on proteins through in silico prediction tools. We evaluated the variants with respect to the hormonal characteristics and clinical outcomes of the patients. Statistical Analysis Used: All variables were analysed using GraphPad Prism 8. Kruskal-Wallis t-test and Fisher's exact test were used to compare clinical parameters and frequency differences among PCOS patients with and without variants. Results: The data presented here reveal eight heterozygous exonic variants, namely CYP21A2 (p.Ala392Thr, p.Gln319Ter and p.I143N), steroidogenic acute regulatory (p.Arg53 Leu), AKR1C3 (p.Phe205Val), P450 oxidoreductase (p.Val334Ile and p.Val251Met) and HSD17B6 (p.Gly40Ser), of which three were pathogenic, and four variants of uncertain significance in 8 out of 51 patients (15.68%). The identified variants were predicted to cause protein destabilisation, thus likely contributing to the pathogenesis of PCOS. Some of the variants showed significant differences between PCOS patients and population database (P < 0.05). Conclusion: The results of this study add to the mutational spectrum of steroidogenic genes and their association with PCOS.

3.
Sci Rep ; 11(1): 4186, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603004

RESUMO

Extraction of biosurfactants from plants is advantageous than from microbes. The properties and robustness of biosurfactant derived from the mesocarp of Balanites aegyptiaca have been reported. However, the dark brown property of biosurfactant and lack of knowledge of its biocompatibility limits its scope. In the present work, the decolorization protocol for this biosurfactant was optimized using hydrogen peroxide. The hemolytic potential and biocompatibility based on cell toxicity and proliferation were also investigated. This study is the first report on the decolorization and toxicity assay of this biosurfactant. For decolorization of biosurfactant, 34 full factorial design was used, and the data were subjected to ANOVA. Results indicate that 1.5% of hydrogen peroxide can decolorize the biosurfactant most efficiently at 40 °C in 70 min at pH 7. Mitochondrial reductase (MTT) and reactive oxygen species (ROS) assays on M5S mouse skin fibroblast cells revealed that decolorized biosurfactant up to 50 µg/mL for 6 h had no significant toxic effect. Hemolysis assay showed ~ 2.5% hemolysis of human RBCs, indicating the nontoxic effect of this biosurfactant. The present work established a decolorization protocol making the biosurfactant chromatically acceptable. Biocompatibility assays confirm its safer use as observed by experiments on M5S skin fibroblast cells under in vitro conditions.


Assuntos
Balanites/química , Materiais Biocompatíveis/química , Tensoativos/química , Animais , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Teste de Materiais/métodos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tensoativos/farmacologia
4.
J Hazard Mater ; 368: 397-403, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690392

RESUMO

Plastic and polythene as hydrophobic materials become a grave concern due to their non-biodegradable nature, cumbersome recycling and waste management. Cuticular wax derived from Calotropis procera is explored as an eco-friendly and safe hydrophobic material. The effects of duration of exposure to solvent, solvent type, size and side of the leaf on cuticular wax yield have been studied. Leaf with the smallest area (10 cm2-25 cm2) was found to be the most suitable to isolate the wax. GC-MS analysis of the wax revealed that the wax consists of mainly esters, alkane and alkene. Mitochondrial reductase (MTT) and lactate dehydrogenase (LDH) assay have been carried out on M5S cell line at various concentrations and the results indicate that up to 1 µg/ml (acetone as solvent) and 3 µg/ml (chloroform as solvent) use of wax has no toxic effect. To evaluate the hydrophobic potential of the wax in developing hydrophobic paper water regains and contact angle has been measured. The gain in hydrophobicity of the paper is evident from the rise in contact angle (≥90˚) of paper coated with wax. Scanning electron micrograph and FTIR spectra generated physical and chemical evidence of coating of wax on paper.


Assuntos
Calotropis , Folhas de Planta/química , Ceras/química , Ceras/toxicidade , Alcanos/análise , Alcenos/análise , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ésteres/análise , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Papel , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...