Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 25(4): 307-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265408

RESUMO

The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.


Assuntos
Antivirais , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Antivirais/uso terapêutico , Pandemias/prevenção & controle , Genoma Viral , Saúde Global , Tratamento Farmacológico da COVID-19
2.
Cell Mol Neurobiol ; 44(1): 6, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38104307

RESUMO

Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.


Assuntos
Esclerose Múltipla , Células-Tronco Neurais , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Sistema Nervoso Central/patologia , Axônios/patologia , Bainha de Mielina/patologia
3.
Life Sci ; 330: 121995, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541578

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Current therapeutic strategies for PD are limited and mainly involve symptomatic relief, with no available treatment for the underlying causes of the disease. Therefore, there is a need for new therapeutic approaches that target the underlying pathophysiological mechanisms of PD. Calcium homeostasis is an essential process for maintaining proper cellular function and survival, including neuronal cells. Calcium dysregulation is also observed in various organelles, including the endoplasmic reticulum (ER), mitochondria, and lysosomes, resulting in organelle dysfunction and impaired inter-organelle communication. The ER, as the primary calcium reservoir, is responsible for folding proteins and maintaining calcium homeostasis, and its dysregulation can lead to protein misfolding and neurodegeneration. The crosstalk between ER and mitochondrial calcium signaling is disrupted in PD, leading to neuronal dysfunction and death. In addition, a lethal network of calcium cytotoxicity utilizes mitochondria, ER and lysosome to destroy neurons. This review article focused on the complex role of calcium dysregulation and its role in aggravating functioning of organelles in PD so as to provide new insight into therapeutic strategies for treating this disease. Targeting dysfunctional organelles, such as the ER and mitochondria and lysosomes and whole network of calcium dyshomeostasis can restore proper calcium homeostasis and improve neuronal function. Additionally targeting calcium dyshomeostasis that arises from miscommunication between several organelles can be targeted so that therapeutic effects of calcium are realised in whole cellular territory.


Assuntos
Doença de Parkinson , Humanos , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios Dopaminérgicos/metabolismo , Homeostase
4.
Protein Pept Lett ; 30(7): 541-551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211849

RESUMO

Designing effective diagnostics, biotherapeutics, and biocatalysts are a few interesting potential outcomes of protein engineering. Despite being just a few decades old, the discipline of de novo protein designing has provided a foundation for remarkable outcomes in the pharmaceuticals and enzyme industries. The technologies that will have the biggest impact on current protein therapeutics include engineered natural protein variants, Fc fusion protein, and antibody engineering. Furthermore, designing protein scaffolds can be used in developing next-generation antibodies and in transplanting active sites in the enzyme. The article highlights the important tools and techniques used in protein engineering and their application in the engineering of enzymes and therapeutic proteins. This review further sheds light on the engineering of superoxide dismutase, an enzyme responsible for catalyzing the conversion of superoxide radicals to oxygen and hydrogen peroxide by catalyzing a redox reaction at the metal center while concurrently oxidizing and reducing superoxide free radicals.


Assuntos
Engenharia de Proteínas , Proteínas , Proteínas/química , Engenharia de Proteínas/métodos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Anticorpos/metabolismo , Oxirredução
5.
Life Sci ; 321: 121641, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997059

RESUMO

Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints.


Assuntos
Artrite Reumatoide , Células-Tronco Mesenquimais , Humanos , Artrite Reumatoide/metabolismo , Articulações/patologia , Autoanticorpos , Autoimunidade , Células-Tronco Mesenquimais/metabolismo
6.
Front Mol Biosci ; 10: 1104577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825200

RESUMO

The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.

7.
Chemosphere ; 313: 137322, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427583

RESUMO

The rapid growth of pollutants, both biological and non-biological, puts environmental systems in jeopardy. In view of this, the current study demonstrates the synthesis of undoped and Cobalt-doped zinc oxide nanoparticles (Co doped ZnO NPs) via co-precipitation method. The confirmation of incorporation of the Co dopant into ZnO NPs was verified through various spectroscopic and microscopic techniques. UV-absorption spectra of cobalt-doped ZnO NPs revealed a red shift with change of absorption spectra from 356 nm to 377 nm as compared to undoped ZnO NPs. XRD studies inferred that the average crystallite size of 0.5% and 1% Co-doped ZnO powder was obtained to be ∼16 nm and 14 nm respectively. A drop in band gap value from 3.48 eV to 3.30 eV provided as substantive evidence of the successful integration of Co2+ ions inside the ZnO matrix. FESEM and HRTEM studies revealed that the obtained ZnO NPs are in narrow size distribution (15-20 nm) with a wurtzite crystal structure. The synthesized ZnO and Co-ZnO NPs showed excellent photocatalytic and antimicrobial potency towards reactive brown dye (RB-1) and two bacterial strains, respectively. 1% Co-doped ZnO demonstrated the maximum photocatalytic activity (∼95%), in contrast to 0.5% Co-doped ZnO and undoped ZnO. Thus, the findings of this work support the developed system has a dual role as the photocatalyst, and antibacterial agent for efficient environmental remediation.


Assuntos
Anti-Infecciosos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cobalto/química
8.
Curr Protein Pept Sci ; 24(1): 7-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36366847

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously present in the environment. These compounds have demonstrated both mutagenic and carcinogenic properties. In the past few decades, scientists have constantly been looking for a possible route to their biological degradation. Bacterial ring hydroxylating dioxygenases (RHDs) implicated in the polycyclic aromatic hydrocarbon degradation comprise a large family of enzymes. RHD catalyzes the stereospecific oxidation of PAHs by incorporating molecular oxygen into inert aromatic nuclei. These biocatalysts hold the potential to completely transform and mineralize toxic forms of these compounds into non-toxic forms. RHDsmediated oxygenation produces cis-dihydrodiols, a chiral compound used in pharmaceutical industries. The Molecular investigation of 16S rRNA and key functional genes involved in pollutant degradation have revealed the dominant occurrence of phylum proteobacteria and actinobacteria in hydrocarbonpolluted environments. The present review is aimed at narrating the diversity, distribution, structural and functional characteristics of RHDs. The review further highlights key amino acids participating in RHDs catalysis. It also discusses the robustness of protein engineering methods in improving the structural and functional activity of the ring hydroxylating dioxygenases.


Assuntos
Dioxigenases , Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Dioxigenases/genética , Dioxigenases/metabolismo , RNA Ribossômico 16S/genética , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias , Biodegradação Ambiental
9.
Microbiol Res ; 265: 127206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162150

RESUMO

COVID-19 (Coronavirus Disease 2019), a life-threatening viral infection, is caused by a highly pathogenic virus named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Currently, no treatment is available for COVID-19; hence there is an urgent need to find effective therapeutic drugs to combat COVID-19 pandemic. Considering the fact that the world is facing a major issue of antimicrobial drug resistance, naturally occurring compounds have the potential to achieve this goal. Antimicrobial peptides (AMPs) are naturally occurring antimicrobial agents which are effective against a wide variety of microbial infections. Therefore, the use of AMPs is an attractive therapeutic strategy for the treatment of SARS-CoV-2 infection. This review sheds light on the potential of antimicrobial peptides as antiviral agents followed by a comprehensive description of effective antiviral peptides derived from various natural sources found to be effective against SARS-CoV and other respiratory viruses. It also highlights the mechanisms of action of antiviral peptides with special emphasis on their effectiveness against SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Peptídeos Antimicrobianos , Antivirais/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Pandemias
10.
Environ Res ; 215(Pt 2): 114369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165858

RESUMO

Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.


Assuntos
Ecossistema , Metagenômica , Biocombustíveis , Biomassa , Combustíveis Fósseis , Lignina , Metagenômica/métodos , Solo/química , Enxofre
11.
Curr Protein Pept Sci ; 23(9): 574-584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082852

RESUMO

The major drawbacks of biofuel production at the commercial level are its low yield, nonavailability of feedstock, feedback inhibition, presence of inhibitory pathways in various organisms, and biofuel intolerance of organisms. The present review focuses on the implications of the CRISPRCas9 mediated gene editing tool to alter the genome of bacteria, algae, fungi, and higher plants for efficient biofuel production. Gene knockout and gene cassette insertions employing CRISPR-Cas9 in Saccharomyces cerevisiae and Kluyveromyces marxianus have resulted in enhanced production of bioethanol and 2-Phenyl ethanol in these organisms, respectively. Genomes of several bacterial strains were also modified to enhance ethanol and butanol production in them. CRISPR-Cas9 modification of microalgae has demonstrated improved total lipid content, a prerequisite for biofuel production. All over, CRISPR-Cas9 has emerged as a tool of choice for engineering the genome and metabolic pathways of organisms for producing industrial biofuel. In plant-based biofuel production, the biosynthetic pathways of lignin interfere with the satisfactory release of fermentable sugars thus hampering efficient biofuel production. CRISPR-Cas9 has shown a promising role in reducing lignin content in various plants including barley, switchgrass, and rice straw.


Assuntos
Biocombustíveis , Sistemas CRISPR-Cas , Lignina/metabolismo , Edição de Genes/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo
12.
Protein Pept Lett ; 28(11): 1312-1322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477502

RESUMO

AIM: This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet, the study was further aimed at corroborating structural and functional studies using biophysical tools. BACKGROUND: Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offer the best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. OBJECTIVE: Objectives of this study include construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide against MRSA strains. METHODS: In this study, we used an array of molecular biology tools that include genetic engineering, PCR amplification, construction of an expression construct and NI-NTA based purification of the recombinant peptide. We have also carried out antimicrobial activity assay to determine MIC (minimum inhibitory concentration) and IC50 values of antimicrobial peptide. To establish the structural and functional relationship, circular dichroism, and both extrinsic and intrinsic fluorescence spectroscopy studies were carried out. RESULTS: Screening of metagenomic library resulted in the identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE, which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in a broad range of pH and temperature. MIC determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas, in the case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at a wide range of temperature and pH. CONCLUSION: Altogether, the peptide discovered from rhizosphere metagenome holds potential in inhibiting the growth of both gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Bactérias/crescimento & desenvolvimento , Clonagem Molecular , Metagenoma , Rizosfera , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacocinética , Humanos
13.
Appl Biochem Biotechnol ; 192(2): 557-572, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424739

RESUMO

Lipases have a characteristic folding pattern of α/ß-hydrolase with mostly parallel ß-sheets, flanked on both sides by α-helixes in the structure. The active site is formed by a catalytic triad (serine, aspartic/glutamic acid, and histidine), which is highly conserved. In this study, we have used an integrated experimental and computational approach to identify the extremophilic microbial lipases from the saline habitats of the Thar Desert of Rajasthan. Lipase-producing bacteria were screened and a few samples showed significant lipase activity in both quantitative and qualitative experiments. 16S rRNA sequence analysis of the isolate F1 showed that its sequence is quite similar to that of Bacillus licheniformis and Bacillus haynesii, indicating that this isolate belongs to a new subspecies of Bacillus. The isolate F7 showed maximum sequence identity with Bacillus tequilensis strain 10b. The isolate F7 sequence analysis provided a clear testimony that it can be a new strain of Bacillus tequilensis. The F7 lipase exhibited optimal activity at 60 °C and pH 9. Structural modeling of the F7 lipase revealed that it has a highly conserved alpha/beta hydrolase fold at the sequence and structural level except for the N-terminal region. Interestingly, residue Glu128 was different from the template structure and showed the hydrogen bonding between the side chain of Glu128 and side chains of Asn35 and Gln152 amino acids. Besides, this amino acid also showed salt bridge interaction between Glu128--Lys101. These interactions may be assisting in preserving the stability and activity of lipase at high temperatures and in alkaline pH conditions. The information gathered from this investigation will guide in the rational designing of new more potential extremophilic lipase.


Assuntos
Bactérias/enzimologia , Clima Desértico , Ecossistema , Lipase/química , Lipase/metabolismo , Modelos Moleculares , Bactérias/genética , Clonagem Molecular , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lipase/genética , Conformação Proteica , Temperatura
14.
Int J Biol Macromol ; 152: 593-604, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088224

RESUMO

In the present investigation, a lipid hydrolyzing gene RPK01 was cloned from metagenome source of hot spring. Expression and purification of recombinant protein revealed single purified protein band of ~24 KDa on 12% SDS-PAGE, and is well corroborated with the deduced molecular weight of protein as calculated from its amino acid sequence. The purified protein displayed high activity towards short chain fatty acids and was found to be completely stable at 30°C till 3h, it further retained ~40% activity at 50°C and 60°C temperature till 3h. Additionally, the pH stability assay showed its functionality in broad range of pH, with maximum stability observed at pH 2.0, it decreases from pH 4.0 to pH 12.0, and nearly showed 40% activity in these pH values. Both circular dichroism and intrinsic Trp fluorescence studies revealed conformational stability of protein structure at wide range of temperature and pH. Enzyme activity enhances in presence of non-ionic surfactants like Tween 20 and TritonX-100. Further, inhibitors of the active site residues including PMSF and DEPC alone were unable to inhibit enzyme activity, while cumulative presence of calcium and inhibitors reduces enzyme activity to 90%, indicating conformational changes in the protein. Molecular simulation dynamics analysis revealed a calcium binding site near the lid helix of this protein(Asn75-Ile80).


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Metagenoma/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Cálcio/metabolismo , Dicroísmo Circular , Estabilidade Enzimática/genética , Fontes Termais , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/genética , Lipase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoativos/metabolismo , Temperatura
15.
Protein Pept Lett ; 27(1): 4-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31438824

RESUMO

Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonstrates increased efficacy, high specificity, decreased drug interaction, low toxicity, biological diversity and direct attacking properties. Pharmaceutical industries are therefore conducting appropriate clinical trials to develop these peptides as potential therapeutic drugs. More than 60 peptide drugs have already reached the market and several hundreds of novel therapeutic peptides are in preclinical and clinical development. Rational designing can be used further to modify the chemical and physical properties of existing peptides. This mini review will discuss the sources, mechanism and recent therapeutic applications of antimicrobial peptides in treatment of infectious diseases.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Interações Medicamentosas , Resistência Microbiana a Medicamentos , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Peso Molecular , Resultado do Tratamento , Vírus/efeitos dos fármacos
16.
Mol Biol Rep ; 47(1): 533-544, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31724125

RESUMO

In the present investigation, we report cloning, expression, purification and characterization of a novel Bleomycin Resistance Dioxygenase (BRPD). His-tagged fusion protein was purified to homogeneity using Ni-NTA affinity chromatography, yielding 1.2 mg of BRPD with specific activity of 6.25 U mg-1 from 600 ml of E. coli culture. Purified enzyme was a dimer with molecular weight ~ 26 kDa in SDS-PAGE and ~ 73 kDa in native PAGE analysis. The protein catalyzed breakdown of hydrocarbon substrates, including catechol and hydroquinone, in the presence of metal ions, as characterized via spectrophotometric analysis of the enzymatic reactions. Bleomycin binding was proven using the EMSA gel retardation assay, and the putative bleomycin binding site was further determined by in silico analysis. Molecular dynamic simulations revealed that BRPD attains octahedral configuration in the presence of Fe2+ ion, forming six co-ordinate complexes to degrade hydroquinone-like molecules. In contrary, in the presence of Zn2+ ion BRPD adopts tetrahedral configuration, which enables degradation of catechol-like molecules.


Assuntos
Proteínas de Bactérias , Bleomicina , Dioxigenases , Hidrocarbonetos Aromáticos , Proteínas Recombinantes de Fusão , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Bleomicina/química , Bleomicina/metabolismo , Catecóis/química , Catecóis/metabolismo , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Farmacorresistência Bacteriana/genética , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/metabolismo , Hidroquinonas/química , Hidroquinonas/metabolismo , Metagenoma/genética , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Microbiologia do Solo
17.
J Genet Eng Biotechnol ; 17(1): 6, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31659568

RESUMO

BACKGROUND: Studying expression of genes by direct sequencing and analysis of metatranscriptomes at a particular time and space can disclose structural and functional insights about microbial communities. The present study reports comparative analysis of metatranscriptome from two distinct soil ecosystems referred as M1 (agriculture soil) and O1 (organic soil). RESULTS: Analysis of sequencing reads revealed Proteobacteria as major dominant phyla in both soil types. The order of the top 3 abundant phyla in M1 sample was Proteobacteria > Ascomycota > Firmicutes, whereas in sample O1, the order was Proteobacteria > Cyanobacteria > Actinobacteria. Analysis of differentially expressed genes demonstrated high expression of transcripts related to copper-binding proteins, proteins involved in electron carrier activity, DNA integration, endonuclease activity, MFS transportation, and other uncharacterized proteins in M1 compared to O1. Of the particular interests, several transcripts related to nitrification, ammonification, stress response, and alternate carbon fixation pathways were highly expressed in M1. In-depth analysis of the sequencing data revealed that transcripts of archaeal origin had high expression in M1 compared to O1 indicating the active role of Archaea in metal- and pesticide-contaminated environment. In addition, transcripts encoding 4-hydroxyphenylpyruvate dioxygenase, glyoxalase/bleomycin resistance protein/dioxygenase, metapyrocatechase, and ring hydroxylating dioxygenases of aromatic hydrocarbon degradation pathways had high expression in M1. Altogether, this study provided important insights about the transcripts and pathways upregulating in the presence of pesticides and herbicides. CONCLUSION: Altogether, this study claims a high expression of microbial transcripts in two ecosystems with a wide range of functions. It further provided clue about several molecular markers which could be a strong indicator of metal and pesticide contamination in soils. Interestingly, our study revealed that Archaea are playing a significant role in nitrification process as compared to bacteria in metal- and pesticide-contaminated soil. In particular, high expression of transcripts related to aromatic hydrocarbon degradation in M1 soil indicates their important role in biodegradation of pollutants, and therefore, further investigation is needed.

18.
Langmuir ; 35(11): 4085-4093, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30810316

RESUMO

The development of new strategies for thermal stability and storage of enzymes is very important, considering the nonretention of catalytic activity by enzymes under harsh conditions of temperature. Following this, herein, a new approach based on the interfacial adsorption of lysozyme (LYZ) at nanointerfaces of ionic liquid (IL)-based microemulsions, for enhanced thermal stability of LYZ, is reported. Microemulsions (MEs) composed of dialkyl imidazolium-based surface active ILs (SAILs) as surfactants, ILs as the nonpolar phase, and ethylene glycol (EG) as the polar phase, without any cosurfactants, have been prepared and characterized in detail. Various regions corresponding to polar-in-IL, bicontinuous, and IL-in-polar phases have been characterized using conductivity measurements. Dynamic light scattering (DLS) measurements have provided insights into the size distribution of microdroplets, whereas temperature-dependent DLS measurements established the thermal stability of the MEs. Nanointerfaces formed by SAILs with EG in thermally stable reverse MEs act as fluid scaffolds to adsorb and provide thermal stability, up to 120 °C, to LYZ. Thermally treated LYZ upon extraction into a buffer shows enzyme activity owing to negligible change in the active site of LYZ, as marked by retention of microenvironment of Trp residues present in the active site of LYZ. The present work is expected to establish a new platform for the development of novel nanointerfaces utilizing biobased components for other biomedical applications.


Assuntos
Líquidos Iônicos/química , Nanotecnologia , Temperatura , Emulsões/química , Estabilidade Enzimática , Muramidase/química , Tamanho da Partícula , Propriedades de Superfície
19.
Curr Drug Targets ; 19(13): 1478-1490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28831912

RESUMO

BACKGROUND: Heat Shock Proteins (HSPs) constitute a group of proteins that play a crucial role in the process of protein folding. HSPs are also known to modulate a number of key apoptotic factors. High expression of these proteins is reported in an array of cancers, such as breast, prostate, colorectal, lung, ovarian, gastric, oral and esophageal cancer. Ample amount of investigations were carried out on a variety of cancers suggesting HSPs as a promising hallmark in cancers. Their expression profile in several tumors elucidates that they help in proliferation, invasion, metastasis and death of cancerous cells. Detection of the levels of heat shock proteins and their specific antibodies in the sera of diseased individuals can play an important role in cancer diagnosis. OBJECTIVES: This review will present and summarize latest research being carried out on heat shock proteins. It will also highlight the clinical and prognostic features of HSP27, HSP60, HSP70, HSP90 and HSP110, and will discuss future implications of HSPs in the diagnosis and prognosis of cancer. Furthermore, the role of heat shock proteins as a therapeutic target in cancer will be discussed. In addition, the review article will report various studies, where HSPs have been targeted for their therapeutic potential. CONCLUSION: In summary, multiple experimental investigations have been successful in suggesting the role of heat shock protein as a clinical biomarker and therapeutic target in cancer. HSPs are associated with a number of cancer hallmarks such as cell proliferation, invasion and metastasis. Inhibition of HSPs has resulted in successful therapeutic outcome in cancer. It has served as a novel anti-cancer therapy for the treatment of several cancer forms. However, more experimental studies are required to elucidate the reliability and efficacy of heat shock proteins in combination with other conventional markers for cancer diagnosis and prognosis. Novel and effective interventions through HSP inhibition are expected to decrease the burden of cancer in the near future.


Assuntos
Proteínas de Choque Térmico/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Prognóstico
20.
3 Biotech ; 4(2): 189-196, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28324449

RESUMO

Rational mutagenesis was performed (at the vicinity of the active site residues D317 and H358 of a mature polypeptide) to investigate the role of amino acids in the thermostability/activity of a lipase enzyme. The single variant enzyme created with E315G (lip M2) mutation near one of the active site residue (D317) found to be an important residue in controlling the thermal stability, the variant with E315G mutation demonstrated biochemical properties similar to that of native lipase. However, we found that this mutation strongly affected the activity and stability of the lip M1 mutant, reported in our previous study (Sharma et al. in Gene 491:264-271, 2012b). The dual mutant with E315G/N355K mutation in the Wt showed small increase in the protein thermostability compared to the native lipase, however, the thermostability of the mutant lip M1 was reduced several fold. Presumably, E315G (lip M2) mutation reverted the thermostability evolved by N355K (lip M1). The native and variant enzymes also displayed large variation in enzyme kinetics and their preference for pNP-esters (substrates). We further generated 3D models and studied the loop modelling of the WT and variants. Interestingly, loop region Leu314-Asn321 showed structural flexibility on introducing E315G mutation in the native lipase. On the other hand, lysine in mutant N355K exhibited side chain conformational changes in the loop Thr353-His358 which resulted in its H-bonding with Glu284. In addition, replacing glutamic acid by glycine at 315 position in lip M3 distorted the electrostatic interactions between Glu315 and Lys355 in the flexible loop region Leu314-Asn321.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...