Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Microbiol ; 15: 1356828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694807

RESUMO

Introduction: Deep investigations of host-associated microbiota can illuminate microbe-based solutions to improve production in an unprecedented manner. The poor larval survival represents the critical bottleneck in sustainable marine aquaculture practices. However, little is known about the microbiota profiles and their governing eco-evolutionary processes of the early life stages of marine teleost, impeding the development of suitable beneficial microbial management strategies. The study provides first-hand mechanistic insights into microbiota and its governing eco-evolutionary processes in early life stages of a tropical marine teleost model, Trachinotus blochii. Methods: The microbiota profiles and their dynamics from the first day of hatching till the end of metamorphosis and that of fingerling's gut during the routine hatchery production were studied using 16S rRNA amplicon-based high-throughput sequencing. Further, the relative contributions of various external factors (rearing water, live feed, microalgae, and formulated feed) to the microbiota profiles at different ontogenies was also analyzed. Results: A less diverse but abundant core microbial community (~58% and 54% in the whole microbiota and gut microbiota, respectively) was observed throughout the early life stages, supporting 'core microbiota' hypothesis. Surprisingly, there were two well-differentiated clusters in the whole microbiota profiles, ≤10 DPH (days post-hatching) and > 10 DPH samples. The levels of microbial taxonomic signatures of stress indicated increased stress in the early stages, a possible explanation for increased mortality during early life stages. Further, the results suggested an adaptive mechanism for establishing beneficial strains along the ontogenetic progression. Moreover, the highly transient microbiota in the early life stages became stable along the ontogenetic progression, hypothesizing that the earlier life stages will be the best window to influence the microbiota. The egg microbiota also crucially affected the microbial community. Noteworthily, both water and the feed microbiota significantly contributed to the early microbiota, with the feed microbiota having a more significant contribution to fish microbiota. The results illustrated that rotifer enrichment would be the optimal medium for the early larval microbiota manipulations. Conclusion: The present study highlighted the crucial foundations for the microbial ecology of T. blochii during early life stages with implications to develop suitable beneficial microbial management strategies for sustainable mariculture production.

2.
Chemphyschem ; : e202400235, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807431

RESUMO

The cooperative mechanism is of paramount importance in the synthesis of supramolecular polymers with desired characteristics, including molecular mass, polydispersity, and morphology. It is primarily driven by the presence of intermolecular interactions, which encompass strong hydrogen bonding, metal-ligand interactions, and dipole-dipole interactions. In this study, we utilize density functional theory and energy decomposition analysis to investigate the cooperative behavior of perylene diimide (PDI) oligomers with alkyl chains at their imide positions, which lack the previously mentioned interactions. Our systematic examination reveals that dispersion interactions originating from the alkyl side-chain substituents play an important role in promoting cooperativity within these PDIs. This influence becomes even more pronounced for alkyl chain lengths beyond hexyl groups. The energy decomposition analysis reveals that the delicate balance between dispersion energy and Pauli repulsion energy is the key driver of cooperative behavior in PDIs. Additionally, we have developed a mathematical model capable of predicting the saturated binding energies for PDI oligomers of varying sizes and alkyl chain lengths. Overall, our findings emphasize the previously undervalued significance of dispersion forces in cooperative supramolecular polymerization, enhancing our overall understanding of the cooperative mechanism.

3.
Curr Microbiol ; 81(7): 174, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753164

RESUMO

The Oscar fish (Astronotus ocellatus) is among the most commonly domesticated and exported ornamental fish species from Kerala. The ornamental fish industry faces a significant challenge with the emergence of diseases caused by multi-drug-resistant bacteria. In the present study, six isolates were resolved from the diseased Oscar fish showing haemorrhages, necrosis, and loss of pigmentation. After phenotypic and genotypic characterization, the bacteria were identified as Edwardsiella tarda, Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli, Brevibacillus borstelensis, and Staphylococcus hominis. Experimental challenge studies in healthy Oscar fish showed that E. tarda caused 100% mortality within 240 h with 6.99 × 106 CFU/fish as LD50 and histopathology revealed the typical signs of infection. The pathogen was re-recovered from the moribund fish thereby confirming Koch's postulates. E. tarda was confirmed through the positive amplification of tarda-specific gene and virulence genes viz., etfD and escB were also detected using PCR. Antibiotic susceptibility tests using disc diffusion displayed that the pathogen is multi-drug-resistant towards antibiotics belonging to aminoglycosides, tetracyclines, and quinolones categories with a MAR index of 0.32, which implicated the antibiotic pressure in the farm. Plasmid curing studies showed a paradigm shift in the resistance pattern with MAR index of 0.04, highlighting the resistance genes are plasmid-borne except for the chromosome-borne tetracycline resistance gene (tetA). This study is the first of its kind in detecting mass mortality caused by E. tarda in Oscar fish. Vigilant surveillance and strategic actions are crucial for the precise detection of pathogens and AMR in aquaculture.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Testes de Sensibilidade Microbiana , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidade , Edwardsiella tarda/isolamento & purificação , Edwardsiella tarda/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/mortalidade , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Peixes/microbiologia , Virulência/genética , Fatores de Virulência/genética
4.
Angew Chem Int Ed Engl ; 63(27): e202403229, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38577991

RESUMO

We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.

5.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467390

RESUMO

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Assuntos
Asparaginase , Bacillus , Humanos , Asparaginase/genética , Bacillus/genética , Asparagina , Temperatura
6.
J Hazard Mater ; 468: 133804, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377911

RESUMO

Understanding the bond dissociation energies (BDEs) of per- and polyfluoroalkyl substances (PFAS) helps in devising their efficient degradation pathways. However, there is only limited experimental data on the PFAS BDEs, and there are uncertainties associated with the BDEs computed using density functional theory. Although quantum chemical methods like the G4 composite method can provide highly accurate BDEs (< 1 kcal mol-1), they are limited to small system sizes. To address DFT's accuracy limitations and G4's system size constraints, we examined the connectivity-based hierarchy (CBH) scheme and found that it can provide BDEs that are reasonably close to the G4 accuracy while retaining the computational efficiency of DFT. To further improve the accuracy, we modified the CBH scheme and demonstrated that BDEs calculated using it have a mean-absolute deviation of 0.7 kcal mol-1 from G4 BDEs. To validate the reliability of this new scheme, we computed the ground state free energies of seven PFAS compounds and BDEs for 44 C-C and C-F bonds at the G4 level of theory. Our results suggest that the modified CBH scheme can accurately compute the BDEs of both small and large PFAS at near G4 level accuracy, offering promise for more effective PFAS degradation strategies.

7.
Fish Physiol Biochem ; 50(2): 557-574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193995

RESUMO

Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.


Assuntos
Antioxidantes , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Larva/metabolismo , Superóxido Dismutase/metabolismo , Ácido Ascórbico , Glutationa , Peixes/metabolismo , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo
8.
ACS Omega ; 8(50): 48211-48220, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144092

RESUMO

The variational quantum eigensolver (VQE) is a widely employed method to solve electronic structure problems in the current noisy intermediate-scale quantum (NISQ) devices. However, due to inherent noise in the NISQ devices, VQE results on NISQ devices often deviate significantly from the results obtained on noiseless statevector simulators or traditional classical computers. The iterative nature of VQE further amplifies the errors in each loop. Recent works have explored ways to integrate deep neural networks (DNN) with VQE to mitigate iterative errors, albeit primarily limited to the noiseless statevector simulators. In this work, we trained DNN models across various quantum circuits and examined the potential of two DNN-VQE approaches, DNN1 and DNNF, for predicting the ground state energies of small molecules in the presence of device noise. We carefully examined the accuracy of the DNN1, DNNF, and VQE methods on both noisy simulators and real quantum devices by considering different ansatzes of varying qubit counts and circuit depths. Our results illustrate the advantages and limitations of both VQE and DNN-VQE approaches. Notably, both DNN1 and DNNF methods consistently outperform the standard VQE method in providing more accurate ground state energies in noisy environments. However, despite being more accurate than VQE, the energies predicted using these methods on real quantum hardware remain meaningful only at reasonable circuit depths (depth = 15, gates = 21). At higher depths (depth = 83, gates = 112), they deviate significantly from the exact results. Additionally, we find that DNNF does not offer any notable advantage over VQE in terms of speed. Consequently, our study recommends DNN1 as the preferred method for obtaining quick and accurate ground state energies of molecules on current quantum hardware, particularly for quantum circuits with lower depth and fewer qubits.

9.
Sci Rep ; 13(1): 14221, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648773

RESUMO

Hot springs are a valuable source of biologically significant chemicals due to their high microbial diversity. To investigate the possibilities for industrial uses of these bacteria, researchers collected water and sediment samples from variety of hot springs. Our investigation employed both culture-dependent and culture-independent techniques, including 16S-based marker gene analysis of the microbiota from the hot springs of Surajkund, Jharkhand. In addition, we cultivated thermophilic isolates and screened for their ability to produce amylase, xylanase, and cellulase. After the optimized production of amylase the enzyme was partially purified and characterized using UPLC, DLS-ZP, and TGA. The retention time for the amylase was observed to be around 0.5 min. We confirmed the stability of the amylase at higher temperatures through observation of a steady thermo gravimetric profile at 400 °C. One of the thermophilic isolates obtained from the kund, demonstrated the potential to degrade lignocellulosic agricultural waste.


Assuntos
Fontes Termais , RNA Ribossômico 16S/genética , Índia , Agricultura , Amilases/genética
10.
Phys Chem Chem Phys ; 25(16): 11789-11804, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067357

RESUMO

There is continuous demand for energy storage devices with high energy densities in consumer electronics, electric vehicles, and the grid energy market. Although commercial lithium-ion batteries (LIBs) satisfy the current needs, the limited availability of their raw materials and the moderate specific charge capacities (SCCs) of LIBS have motivated scientists to search for alternate anode materials for LIBs and create technologies beyond LIBs. In this work, we studied the potential of six cobalt anti-MXenes (CoAs, CoB, CoP, CoS, CoSe, and CoSi), a class of newly discovered 2D materials, as anode materials for lithium, sodium, and potassium ion batteries (LIBs, NIBs, and KIBs). We found that these materials are good electrical conductors and have high adsorption stability for alkali metal ions, which helps to prevent the formation of dendrites and increase the cycle life of the battery. They also show moderate to low migration energy barriers (MEBs), indicating the potential for faster charge-discharge kinetics. We also explain the slightly counter-intuitive result of observing low MEBs along with high adsorption stability. Furthermore, Co-anti-MXenes can adsorb multiple alkali atoms per formula unit, resulting in high specific charge capacities and low average anodic voltages. For example, as anode materials for lithium-ion batteries, CoP and CoSi have SCC values of 1075.4 mA h g-1 and 934 mA h g-1, and anodic voltages as low as 0.28 V and 0.43 V, respectively. Moreover, even the maximally metalated Co-anti-MXenes did not show agglomeration tendency at room temperature. Furthermore, the volume expansion of these materials is minimum for both Li and Na adsorption. As a whole, we find that Co-anti-MXenes are promising as anode materials for alkali metal ion batteries.

11.
J Phys Chem Lett ; 14(11): 2823-2829, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36912757

RESUMO

Restricted migration of reactive species limits chemical transformations within interstellar and cometary ices. We report the migration of CO2 from clathrate hydrate (CH) cages to amorphous solid water (ASW) in the presence of tetrahydrofuran (THF) under ultrahigh vacuum (UHV) and cryogenic conditions. Thermal annealing of sequentially deposited CO2 and H2O ice, CO2@H2O, to 90 K resulted in the partitioning of CO2 in 512 and 51262 CH cages (CO2@512, CO2@51262). However, upon preparing a composite ice film composed of CO2@512, CO2@51262 and THF distributed in the water matrix at 90 K, and annealing the mixture for 6 h at 130 K produced mixed CO2-THF CH, where THF occupied the 51264 cages (THF@51264) exclusively while CO2 in 51262 cages (CO2@51262) got transferred to the ASW matrix and CO2 in the 512 cages (CO2@512) remained as is. This cage-matrix exchange may create a more conducive environment for chemical transformations in interstellar environments.

12.
Fish Physiol Biochem ; 49(2): 307-320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36949263

RESUMO

The present study reports the comparative pharmacokinetic profiles of florfenicol and its metabolite (florfenicol amine, FFA) in Trachinotus blochii under tropical marine conditions (salinity: 35 ± 1.4‰; temperature: 28.8 ± 0.54 °C) following a single in-feed oral administration of the recommended dose (15 mg/Kg). Furthermore, the study investigated the distribution of these two compounds in nine different tissues. The maximum florfenicol concentrations (Cmax) in plasma and tissues were observed within five hours (Tmax), except for bile. The Cmax ranged from 572 to 1954 ng/g or ml and was in the intestine > bile > muscle + skin > liver > gill = heart > plasma > kidney = spleen. The elimination half-life of FFC was significantly slower in the bile (38.25 ± 4.46 h). The AUC tissue/plasma was highest for bile (3.77 ± 0.22), followed by intestine > muscle + skin > heart > liver > kidney = gill = spleen. Tmax and t1/2ß were slower, and Cmax was lower for FFA than florfenicol in all tissues except Cmax of the kidney and bile. FFA t1/2ß was exceptionally slower in the kidney (46.01 ± 8.2 h). Interestingly, reaching an apparent distribution rate of > 0.5 was comparatively faster in the kidney, liver, and gills than in other tissues. The highest apparent metabolic rate was in the kidney (0.95 ± 0.01) and the lowest in plasma (0.41 ± 0.01). The generated data can be applied for formulating efficient therapeutic protocols in T. blochii, a promising mariculture species.


Assuntos
Antibacterianos , Peixes , Animais , Distribuição Tecidual , Administração Oral , Meia-Vida
13.
Sci Data ; 10(1): 97, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797271

RESUMO

Cobia (Rachycentron canadum, Rachycentridae) is one of the prospective species for mariculture. The transcriptome-based study on cobia was hampered by an inadequate reference genome and a lack of full-length cDNAs. We used a long-read based sequencing technology (PacBio Sequel II Iso-Seq3 SMRT) to obtain complete transcriptome sequences from larvae, juveniles, and various tissues of adult cobia, and a single SMRTcell generated 99 gigabytes of data and 51,205,946,694 bases. A total of 8609435, 7441673 and 9140164 subreads were generated from the larval, juvenile, and adult sample pools, with mean sub-read lengths of 2109.9, 1988.2 and 1996.2 bp, respectively. All samples were combined to increase transcript recovery and clustered into 35661 high-quality reads. This is the first report on a full-length transcriptome from R. canadum. Our results illustrate a significant increase in the identified amount of cobia LncRNAs and alternatively spliced transcripts, which will help improve genome annotation. Furthermore, this information will be beneficial for nutrigenomics and functional studies on cobia and other commercially important mariculture species.


Assuntos
Perciformes , Transcriptoma , Animais , Peixes/genética , Larva , Perciformes/genética , Estudos Prospectivos
14.
Meat Sci ; 198: 109108, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36640718

RESUMO

Sixty Chinchilla rabbits (28 days old) were divided into three equal groups (n = 20). Rabbits in MOL0 (control) were fed pellets containing 700 g cowpea hay/kg pellet as forage source, whereas rabbits in MOL700 and MOL950 were fed pellets containing 700 and 950 g moringa leaves/kg feed pellets, respectively. Average daily gain and feed conversion ratio was comparable in MOL700 and MOL0, however, it was higher in MOL950. Among the carcass traits, dressing percent was higher while, chilling loss was lower in MOL700 treatment. The Longissimus thoracis muscle of rabbits fed moringa leaves containing pellets (MOL700 and MOL950) had lower saturated fatty acid content, higher C18:3n-3 and total n-3 fatty acids along with lower thrombogenic index value. Hence, incorporating moringa leaves at 70% level is beneficial in terms of improved growth performance and functional attributes of meat than diet- containing sole moringa leaves.


Assuntos
Moringa oleifera , Coelhos , Animais , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos , Carne/análise , Folhas de Planta
15.
Anim Biosci ; 36(5): 692-703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36397691

RESUMO

OBJECTIVE: The main goals of this investigation were to i) assess the population structure and genetic diversity and ii) determine the efficiency of the ongoing breeding program in a closed flock of Angora rabbits through pedigree analysis. METHODS: The pedigree records of 6,145 animals, born between 1996 to 2020 at NTRS, ICAR-CSWRI, Garsa were analyzed using ENDOG version 4.8 software package. The genealogical information, genetic conservation index and parameters based on gene origin probabilities were estimated. RESULTS: Analysis revealed that, 99.09% of the kits had both parents recorded in the whole dataset. The completeness levels for the whole pedigree were 99.12%, 97.12%, 90.66%, 82.49%, and 74.11% for the 1st, 2nd, 3rd, 4th, and 5th generations, respectively, reflecting well-maintained pedigree records. The maximum inbreeding, average inbreeding and relatedness were 36.96%, 8.07%, and 15.82%, respectively. The mean maximum, mean equivalent and mean completed generations were 10.28, 7.91, and 5.51 with 0.85%, 1.19%, and 1.85% increase in inbreeding, respectively. The effective population size estimated from maximum, equivalent and complete generations were 58.50, 27.05, and 42.08, respectively. Only 1.51% of total mating was highly inbred. The effective population size computed via the individual increase in inbreeding was 42.83. The effective numbers of founders (fe), ancestors (fa), founder genomes (fg) and non-founder genomes (fng) were 18, 16, 6.22, and 9.50, respectively. The fe/fa ratio was 1.12, indicating occasional bottlenecks had occurred in the population. The six most influential ancestors explained 50% of genes contributed to the gene pool. The average generation interval was 1.51 years and was longer for the sireoffspring pathway. The population lost 8% genetic diversity over time, however, considerable genetic variability still existed in the closed Angora population. CONCLUSION: This study provides important and practical insights to manage and maintain the genetic variability within the individual flock and the entire population.

16.
Appl Microbiol Biotechnol ; 106(12): 4719-4735, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35739345

RESUMO

Applications of microbiome research through metagenomics promise to generate microbiome manipulation strategies for improved larval survival in aquaculture. However, existing lacunae on the effects of sample preservation methods in metagenome profiles hinder the successful application of this technique. In this context, four preservation methods were scrutinized to identify reliable methods for fish larval microbiome research. The results showed that a total of ten metagenomics metrics, including DNA yield, taxonomic and functional microbiome profiles, and diversity measures, were significantly (P < 0.05) influenced by the preservation method. Activity ranking based on the performance and reproducibility showed that three methods, namely immediate direct freezing, room temperature preservation in absolute ethanol, and preservation at - 20 °C in lysis, storage, and transportation buffer, could be recommended for larval microbiome research. Furthermore, as there was an apparent deviation of the microbiome profiles of ethanol preserved samples at room temperature, the other methods are preferred. Detailed analysis showed that this deviation was due to the bias towards Vibrionales and Rhodobacterales. The microbial taxa responsible for the dissimilarity across different methods were identified. Altogether, the paper sheds light on the preservation protocols of fish larval microbiome research for the first time. The results can help in cross-comparison of future and past larval microbiome studies. Furthermore, this is the first report on the activity ranking of preservation methods based on metagenomics metrics. Apart from methodological perspectives, the paper provides for the first time certain insights into larval microbial profiles of Rachycentron canadum, a potential marine aquaculture species. KEY POINTS: • First report on effects of preservation methods on fish larval microbiome profiles. • First report on activity ranking of preservation methods based on metagenomics metrics. • Storage methods influenced DNA yield, taxonomic and functional microbiome profiles.


Assuntos
Metagenômica , Microbiota , Animais , Etanol , Peixes , Larva , Metagenoma , Metagenômica/métodos , Microbiota/genética , Reprodutibilidade dos Testes
17.
Chem Asian J ; 17(16): e202200494, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35621295

RESUMO

Cooperative supramolecular polymerization is important for the synthesis of functional supramolecular homo and block-copolymers of π-systems. Current strategies indicate the need of strong hydrogen bonding (H-bonding) and/or dipolar interactions in the π-systems to achieve cooperativity. In sharp contrast, here we report the cooperative supramolecular polymerization in alkyl chain substituted perylene diimides (alkyl PDIs) driven by dispersive interactions with molecular level understanding. Moreover, alkyl PDIs follow cooperative mechanism with cooperativity similar to the strong H-bonded π-systems (σ ∼10-5 ) despite the lack of strong H-bonding and dipolar interactions. Computer simulations show that this surprising phenomenon in alkyl PDIs is driven by the efficient dispersive interactions among the alkyl chains and π-cores due to their zigzag arrangement in the supramolecular polymer. Importantly, alkyl PDIs display cooperative supramolecular polymerization in both polar and non-polar solvents which is difficult for H-bonded/dipolar π-systems thus highlighting the advantages of dispersive interactions.

18.
Environ Sci Technol ; 56(12): 8167-8175, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35481774

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are synthetic contaminants found in drinking groundwater sources and a wide variety of consumer products. Because of their adverse environmental and human health effects, remediation of these persistent compounds has attracted significant recent attention. To gain mechanistic insight into their remediation, we present the first ab initio study of PFAS degradation via hydrated electrons─a configuration that has not been correctly considered in previous computational studies up to this point. To capture these complex dynamical effects, we harness ab initio molecular dynamics (AIMD) simulations to probe the reactivities of perfluorooctanoic (PFOA) and perfluorooctane sulfonic acid (PFOS) with hydrated electrons in explicit water. We complement our AIMD calculations with advanced metadynamics sampling techniques to compute free energy profiles and detailed statistical analyses of PFOA/PFOS dynamics. Although our calculations show that the activation barrier for C-F bond dissociation in PFOS is three times larger than that in PFOA, all the computed free energy barriers are still relatively low, resulting in a diffusion-limited process. We discuss our results in the context of recent studies on PFAS degradation with hydrated electrons to give insight into the most efficient remediation strategies for these contaminants. Most importantly, we show that the degradation of PFASs with hydrated electrons is markedly different from that with excess electrons/charges, a common (but largely incomplete) approach used in several earlier computational studies.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Elétrons , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
19.
Environ Pollut ; 305: 119250, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398155

RESUMO

Due to the ever-increasing production of plastic litter and its subsequent accumulation as microplastic in the environment, the pollution caused by microplastics is considered as a global menace, especially in the coastal ecosystem. Occurrence of microplastics in water and three commercially important bivalves, Viz. green mussel (Perna viridis), edible oyster (Magallana bilineata) and black clam (Villorita cyprinoides) from five different locations of southwest coast of India was studied. The highest abundance of microplastics was observed in water samples from Periyar River (163.67 items L-1). Among bivalves, the highest abundance of microplastics was observed in clams from Periyar River (digestive gland: 22.8 g-1; gill: 29.6 g-1), whereas the lowest abundance was observed in mussels sampled from Vembanad estuary (digestive gland: 5.6 g-1; gill: 8.5 g -1). Fibers were the most prevalent type of microplastics found in bivalve tissues across each location. Microplastics less than 2 mm were the most prevalent based on size. Polypropylene and high-density polyethylene were the two types of microplastics observed based on the results of Raman spectroscopy. No relationship was observed between shell length, tissue weight and microplastic abundance. A strong positive correlation was observed between the microplastic presence in water and bivalve tissues. The usefulness of sedentary bivalves in assessing the aquatic pollution has been validated through this study.


Assuntos
Perna (Organismo) , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Índia , Microplásticos , Plásticos , Água , Poluentes Químicos da Água/análise
20.
Nat Commun ; 13(1): 1505, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314678

RESUMO

Enzymes are extremely complex catalytic structures with immense biological and technological importance. Nevertheless, their widespread environmental implementation faces several challenges, including high production costs, low operational stability, and intricate recovery and reusability. Therefore, the de novo design of minimalistic biomolecular nanomaterials that can efficiently mimic the biocatalytic function (bionanozymes) and overcome the limitations of natural enzymes is a critical goal in biomolecular engineering. Here, we report an exceptionally simple yet highly active and robust single amino acid bionanozyme that can catalyze the rapid oxidation of environmentally toxic phenolic contaminates and serves as an ultrasensitive tool to detect biologically important neurotransmitters similar to the laccase enzyme. While inspired by the laccase catalytic site, the substantially simpler copper-coordinated bionanozyme is ∼5400 times more cost-effective, four orders more efficient, and 36 times more sensitive compared to the natural protein. Furthermore, the designed mimic is stable under extreme conditions (pH, ionic strength, temperature, storage time), markedly reusable for several cycles, and displays broad substrate specificity. These findings hold great promise in developing efficient bionanozymes for analytical chemistry, environmental protection, and biotechnology.


Assuntos
Recuperação e Remediação Ambiental , Lacase , Aminoácidos , Catálise , Lacase/metabolismo , Fenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...