Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 45(7): e13822, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34121203

RESUMO

Phosphorus (P) flow in agricultural land depends on the P taken off from harvested product, its losses through runoff and fertilizer applied to balance the removed P. Phytic acid (PA), the major storage form of phosphorus (P) in cereal grains is a key anti-nutrient for human and non-ruminants leads to eutrophication of waterways. As the natural non-renewable P reserves are limited, enhancing P use efficiency is needed for field crops. SULTR-like phosphorus distribution transporter (SPDT) is a novel rice transporter transfer P to the grain. Any alteration in transporter gene reduce grain P with concomitant rise in the leaves. A low PA (3.0 g/kg) rice Khira was identified where a single nucleotide mutation in LOC_Os06g05160 gene encoding SPDT showed low P transportation to grain. An amino acid change was detected as Valine-330 to Alanine at the 3' end of fifth exon. Highest expression of SPDT was observed in node I of rice as compared to low PA genotype. The mutation in SPDT could significantly affect P and PA accumulation in the grains with increased mineral bioavailability. PRACTICAL APPLICATIONS: Excessive P application in crop leads to higher production cost as well as rapid depletion of limited rock phosphate. Alteration of P transporter function in the rice lower PA and total P accumulation in the grains with increased mineral bioavailability. The re-distributed P in the straw can be applied as manure to the rice field. Thus, less P will be removed from the field, result in the decreased requirement for P fertilizer.


Assuntos
Oryza , Disponibilidade Biológica , Grão Comestível/química , Humanos , Minerais , Nucleotídeos , Oryza/genética , Fósforo , Ácido Fítico/análise
2.
Food Res Int ; 142: 110193, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33773669

RESUMO

Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.


Assuntos
6-Fitase , Ácido Fítico , Animais , Humanos , Minerais , Sementes , Glycine max
3.
J Sci Food Agric ; 100(4): 1598-1607, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31773736

RESUMO

BACKGROUND: Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch-digesting α-amylase (which requires calcium for activity) in the human gut. In principle, the greater the amount of PA, the lower is the rate of starch hydrolysis. It is reflected in the lower glycemic index (GI) value of food. People leading sedentary lifestyles and consuming rice as a staple food are likely to develop type 2 diabetes. Hence, this study was planned to understand how PA content of different rice varieties affects the GI. RESULTS: Rice Khira and Mugai which had very low PA (0.30 and 0.36 g kg-1 , respectively) had higher GI values and α-amylase activity, while Nua Dhusara and the pigmented rice Manipuri black rice (MBR) which had high PA (2.13 and 2.98 g kg-1 , respectively) showed low α-amylase activity and GI values. This relationship was statistically significant, though a weak relationship was found for the pigmented rice. Expression levels of MIPSI, IPKI and GBSSI markedly increased in the middle stage of grain development in all of the six genotypes having contrasting PA and GI. Maximum expression of MIPSI and IPKI was observed in Nua Dhusara and MBR (which had high PA) while that of GBSSI was observed in Khira and Mugai (with higher GI) at middle stage showing a negative correlation between PA and GI. CONCLUSIONS: The data indicate that high PA content in rice might have an adverse effect on starch digestibility resulting in slower starch digestion in the human gut and consequently low glycemic response. © 2019 Society of Chemical Industry.


Assuntos
Mucosa Gástrica/metabolismo , Oryza/metabolismo , Ácido Fítico/metabolismo , Amido/metabolismo , Digestão , Índice Glicêmico , Humanos , Modelos Biológicos , Oryza/química , Ácido Fítico/análise , Amido/química , alfa-Amilases/química , alfa-Amilases/metabolismo
4.
Sci Rep ; 9(1): 3196, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824776

RESUMO

Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a  BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining  13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, independent of  the  main effect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.


Assuntos
Técnicas de Genotipagem , Proteínas de Grãos/metabolismo , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Meio Ambiente , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Ligação Genética , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
5.
PLoS One ; 11(9): e0162268, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598392

RESUMO

A large number of short grain aromatic rice suited to the agro-climatic conditions and local preferences are grown in niche areas of different parts of India and their diversity is evolved over centuries as a result of selection by traditional farmers. Systematic characterization of these specialty rices has not been attempted. An effort was made to characterize 126 aromatic short grain rice landraces, collected from 19 different districts in the State of Odisha, from eastern India. High level of variation for grain quality and agronomic traits among these aromatic rices was observed and genotypes having desirable phenotypic traits like erect flag leaf, thick culm, compact and dense panicles, short plant stature, early duration, superior yield and grain quality traits were identified. A total of 24 SSR markers corresponding to the hyper variable regions of rice chromosomes were used to understand the genetic diversity and to establish the genetic relationship among the aromatic short grain rice landraces at nuclear genome level. SSR analysis of 126 genotypes from Odisha and 10 genotypes from other states revealed 110 alleles with an average of 4.583 and the Nei's genetic diversity value (He) was in the range of 0.034-0.880 revealing two sub-populations SP 1 (membership percentage-27.1%) and SP 2 (72.9%). At the organelle genomic level for the C/A repeats in PS1D sequence of chloroplasts, eight different plastid sub types and 33 haplotypes were detected. The japonica (Nipponbare) subtype (6C7A) was detected in 100 genotypes followed by O. rufipogon (KF428978) subtype (6C6A) in 13 genotypes while indica (93-11) sub type (8C8A) was seen in 14 genotypes. The tree constructed based on haplotypes suggests that short grain aromatic landraces might have independent origin of these plastid subtypes. Notably a wide range of diversity was observed among these landraces cultivated in different parts confined to the State of Odisha.


Assuntos
Genética Populacional , Genoma de Planta , Oryza/genética , Filogenia , Característica Quantitativa Herdável , Alelos , Núcleo Celular/genética , Cloroplastos/genética , Grão Comestível , Marcadores Genéticos , Variação Genética , Genótipo , Repetições de Microssatélites , Oryza/classificação , Fenótipo , Melhoramento Vegetal , Seleção Genética
6.
Food Chem ; 191: 21-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26258697

RESUMO

With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values.


Assuntos
Amilose/análise , Grão Comestível/química , Oryza/química , Proteínas de Plantas/análise , Calibragem , Fibras na Dieta/análise , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...