Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(2): e31371, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363631

RESUMO

Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE), and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To investigate pathogenic mechanisms in such instances, we have characterized rod photoreceptor and retinal gene expression changes in response to a defined insult to photoreceptor structure, using the retinal degeneration slow (rds) mouse model. Global gene expression profiling was performed on flow-sorted rds and wild-type rod photoreceptors immediately prior and subsequent to times at which OSs are normally elaborated. Dysregulated genes were identified via microarray hybridization, and selected candidates were validated using quantitative PCR analyses. Both the array and qPCR data revealed that gene expression changes were generally modest and dispersed amongst a variety of known functional networks. Although genes showing major (>5-fold) differential expression were identified in a few instances, nearly all displayed transient temporal profiles, returning to WT levels by postnatal day (P) 21. These observations suggest that major defects in photoreceptor cell structure may induce early homeostatic responses, which function in a protective manner to promote cell viability. We identified a single key gene, Egr1, that was dysregulated in a sustained fashion in rds rod photoreceptors and retina. Egr1 upregulation was associated with microglial activation and migration into the outer retina at times subsequent to the major peak of photoreceptor cell death. Interestingly, this response was accompanied by neurotrophic factor upregulation. We hypothesize that activation of Egr1 and neurotrophic factors may represent a protective immune mechanism which contributes to the characteristically slow retinal degeneration of the rds mouse model.


Assuntos
Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/prevenção & controle , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/prevenção & controle , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/patologia , Homeostase/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células Fotorreceptoras de Vertebrados/imunologia , Células Fotorreceptoras de Vertebrados/metabolismo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Degeneração Retiniana/imunologia , Degeneração Retiniana/patologia , Regulação para Cima/genética
2.
Dev Cell ; 14(1): 120-31, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18160348

RESUMO

Secreted Wnt proteins play essential roles in many biological processes during development and diseases. However, little is known about the mechanism(s) controlling Wnt secretion. Recent studies have identified Wntless (Wls) and the retromer complex as essential components involved in Wnt signaling. While Wls has been shown to be essential for Wnt secretion, the function(s) of the retromer complex in Wnt signaling is unknown. Here, we have examined a role of Vps35, an essential retromer subunit, in Wnt signaling in Drosophila and mammalian cells. We provide compelling evidence that the retromer complex is required for Wnt secretion. Importantly, Vps35 colocalizes in endosomes and interacts with Wls. Wls becomes unstable in the absence of retromer activity. Our findings link Wls and retromer functions in the same conserved Wnt secretion pathway. We propose that retromer influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network (TGN).


Assuntos
Membrana Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Endossomos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Wnt/metabolismo , Rede trans-Golgi/fisiologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/fisiologia , Homeostase , Transdução de Sinais , Proteínas de Transporte Vesicular/fisiologia , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...