Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1217769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808518

RESUMO

Targeted therapy is highly desirable, as it allows for selective cytotoxicity on diseased cells without off-target side effects. Nucleolin is a remarkable target for cancer therapy given its high abundance, selective presence on the plasma membrane, and multifaceted influence on the initiation and progression of cancer. Nucleolin is a protein overexpressed on the cell membrane in many tumors and serves as a binding protein for several ligands implicated in angiogenesis and tumorigenesis. Nucleolin is present in the cytoplasm, nucleoplasm, and nucleolus and is used by selected pathogens for cell entry. AS1411 is a guanosine-rich oligonucleotide aptamer that binds nucleolin and is internalized in the tumor cells. AS1411 is well tolerated at therapeutic doses and localizes to tumor cells overexpressing nucleolin. AS1411 has a good safety profile with efficacy in relapsed acute myeloid leukemia and renal cell carcinoma producing mild or moderate side effects. The promising potential of AS1411 is its ability to be conjugated to drugs and nanoparticles. When a drug is bound to AS1411, the drug will localize to tumor cells leading to targeted therapy with fewer systemic side effects than traditional practices. AS1411 can also be bound to nanoparticles capable of detecting nucleolin at concentrations far lower than lab techniques used today for cancer diagnosis. AS1411 has a promising potential to change cancer diagnoses and treatment.

2.
Front Physiol ; 12: 640374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335286

RESUMO

Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, ß -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.

3.
Front Oncol ; 11: 654940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094947

RESUMO

The endoplasmic reticulum (ER) regulates protein folding, post-translational modifications, lipid synthesis, and calcium signaling to attenuate the accumulation of misfolded proteins causing ER stress and maintains cellular homeostasis. The tumor microenvironment is rich in soluble cytokines, chemokines, growth, and angiogenic factors and can drive the ER's abnormal functioning in healthy cells. Cancer cells adapt well to the tumor microenvironment induced ER stress. We identified that the inflammatory breast cancer (IBC) cells abundantly express osteoprotegerin (OPG) and their tumor microenvironment is rich in OPG protein. OPG also called osteoclast differentiation factor/osteoclastogenesis inhibitory factor (OCIF) is a soluble decoy receptor for receptor activator of nuclear factor-kappa B ligand (RANKL). Employing mass spectrometry analysis, we identified a set of ER chaperones associated with OPG in IBC cell lysates (SUM149PT, SUM1315MO2) compared to healthy human mammary epithelial cells (HMEC). Proximity ligation assay (PLA) and immunoprecipitation assay validated the interaction between OPG and ER chaperone and master regulator of unfolded protein response (UPR) GRP78/BiP (glucose-regulated protein/Binding immunoglobulin protein). We detected remarkably high gene expression of CCAAT enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE1α), protein disulfide-isomerase (PDI), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), X-box binding protein 1 (XBP-1) and growth arrest and DNA damage-inducible protein (GADD34) in SUM149PT and SUM190PT cells when compared to HMEC. Similarly, tissue sections of human IBC expressed high levels of ER stress proteins. We evaluated cell death and apoptosis upon Salubrinal and phenylbutyrate treatment in healthy and IBC cells by caspase-3 activity and cleaved poly (ADP-ribose) polymerase (PARP) protein assay. IBC (SUM149PT and SUM190PT) cells were chemosensitive to Salubrinal treatment, possibly via inhibition in OPG secretion, upregulating ATF4, and CHOP, thus ultimately driving caspase-3 mediated IBC cell death. Salubrinal treatment upregulated PDI, which connects ER stress to oxidative stress. We observed increased ROS production and reduced cell proliferation of Salubrinal treated IBC cells. Treatment with antioxidants could rescue IBC cells from ROS and aborted cell proliferation. Our findings implicate that manipulating ER stress with Salubrinal may provide a safer and tailored strategy to target the growth of inflammatory and aggressive forms of breast cancer.

4.
Front Cell Infect Microbiol ; 11: 603309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816328

RESUMO

Herpesviruses utilize various host factors to establish latent infection, survival, and spread disease in the host. These factors include host cellular machinery, host proteins, gene expression, multiple transcription factors, cellular signal pathways, immune cell activation, transcription factors, cytokines, angiogenesis, invasion, and factors promoting metastasis. The knowledge and understanding of host genes, protein products, and biochemical pathways lead to discovering safe and effective antivirals to prevent viral reactivation and spread infection. Here, we focus on the contribution of pro-inflammatory, anti-inflammatory, and resolution lipid metabolites of the arachidonic acid (AA) pathway in the lifecycle of herpesvirus infections. We discuss how various herpesviruses utilize these lipid pathways to their advantage and how we target them to combat herpesvirus infection. We also summarize recent development in anti-herpesvirus therapeutics and new strategies proposed or under clinical trials. These anti-herpesvirus therapeutics include inhibitors blocking viral life cycle events, engineered anticancer agents, epigenome influencing factors, immunomodulators, and therapeutic compounds from natural extracts.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Regulação Viral da Expressão Gênica , Humanos , Ativação Viral , Latência Viral , Replicação Viral
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494284

RESUMO

The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.


Assuntos
Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Viroses/metabolismo , Animais , Biomarcadores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Viral , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Proteínas Hedgehog/genética , Humanos , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Ligação Proteica , Transativadores/genética , Transativadores/metabolismo , Viroses/etiologia , Viroses/terapia
6.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32102879

RESUMO

Lipoxin A4 (LXA4) is an endogenous lipid mediator with compelling anti-inflammatory and proresolution properties. Studies done to assess the role of arachidonic acid pathways of the host in Kaposi's sarcoma-associated herpesvirus (KSHV) biology helped discover that KSHV infection hijacks the proinflammatory cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) pathways and concurrently reduces anti-inflammatory LXA4 secretion to maintain KSHV latency in infected cells. Treatment of KSHV-infected cells with LXA4 minimizes the activation of inflammatory and proliferative signaling pathways, including the NF-κB, AKT, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, but the exact mechanism of action of LXA4 remains unexplored. Here, using mass spectrometry analysis, we identified components from the minichromosome maintenance (MCM) protein and chromatin-remodeling complex SMARCB1 and SMARCC2 to be LXA4-interacting host proteins in KSHV-infected cells. We identified a higher level of nuclear aryl hydrocarbon receptor (AhR) in LXA4-treated KSHV-infected cells than in untreated KSHV-infected cells, which probably facilitates the affinity interaction of the nucleosome complex protein with LXA4. We demonstrate that SMARCB1 regulates both replication and transcription activator (RTA) activity and host hedgehog (hh) signaling in LXA4-treated KSHV-infected cells. Host hedgehog signaling was modulated in an AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-S6 kinase-dependent manner in LXA4-treated KSHV-infected cells. Since anti-inflammatory drugs are beneficial as adjuvants to conventional and immune-based therapies, we evaluated the potential of LXA4 treatment in regulating programmed death-ligand 1 (PD-L1) on KSHV-carrying tumor cells. Overall, our study identified LXA4-interacting host factors in KSHV-infected cells, which could help provide an understanding of the mode of action of LXA4 and its therapeutic potential against KSHV.IMPORTANCE The latent-to-lytic switch in KSHV infection is one of the critical events regulated by the major replication and transcription activator KSHV protein called RTA. Chromatin modification of the viral genome determines the phase of the viral life cycle in the host. Here, we report that LXA4 interacts with a host chromatin modulator, especially SMARCB1, which upregulates the KSHV ORF50 promoter. SMARCB1 has also been recognized to be a tumor suppressor protein which controls many tumorigenic events associated with the hedgehog (hh) signaling pathway. We also observed that LXA4 treatment reduces PD-L1 expression and that PD-L1 expression is an important immune evasion strategy used by KSHV for its survival and maintenance in the host. Our study underscores the role of LXA4 in KSHV biology and emphasizes that KSHV is strategic in downregulating LXA4 secretion in the host to establish latency. This study also uncovers the therapeutic potential of LXA4 and its targetable receptor, AhR, in KSHV's pathogenesis.


Assuntos
Cromatina/fisiologia , Herpesvirus Humano 8/metabolismo , Lipoxinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Araquidonato 5-Lipoxigenase/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Cromatina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação Viral da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Herpesvirus Humano 8/patogenicidade , Proteínas Imediatamente Precoces/genética , Lipoxinas/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína SMARCB1/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Latência Viral/genética , Replicação Viral/genética
7.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31969437

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi's sarcoma (KS) in immunocompromised individuals. KS lesion cells exhibit many similarities to neuroendocrine (NE) cancers, such as highly vascular and red/purple tumor lesions, spindle-shaped cells, an insignificant role for classic oncogenes in tumor development, the release of bioactive amines, and indolent growth of the tumors. However, the mechanistic basis for the similarity of KS lesion endothelial cells to neuroendocrine tumors remains unknown. Next-generation sequencing and bioinformatics analysis in the present study demonstrate that endothelial cells latently infected with KSHV express several neuronal and NE genes. De novo infection of primary dermal endothelial cells with live and UV-inactivated KSHV demonstrated that viral gene expression is responsible for the upregulation of five selected NE genes (adrenomedullin 2 [ADM2], histamine receptor H1 [HRH1], neuron-specific enolase [NSE] [ENO2], neuronal protein gene product 9.5 [PGP9.5], and somatostatin receptor 1 [SSTR1]). Immunofluorescence and immunohistochemistry examinations demonstrated the robust expression of the NE genes HRH1 and NSE/ENO2 in KSHV-infected KS tissue samples and KS visceral tissue microarrays. Further analysis demonstrated that KSHV latent open reading frame K12 (ORFK12) gene (kaposin A)-mediated decreased host REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) protein, a neuronal gene transcription repressor protein, is responsible for NE gene expression in infected endothelial cells. The NE gene expression observed in KSHV-infected cells was recapitulated in uninfected endothelial cells by the exogenous expression of ORFK12 and by the treatment of cells with the REST inhibitor X5050. When the neuroactive ligand-activating receptor HRH1 and inhibitory SSTR1 were knocked out by CRISPR, HRH1 knockout (KO) significantly inhibited cell proliferation, while SSTR1 KO induced cell proliferation, thus suggesting that HRH1 and SSTR1 probably counteract each other in regulating KSHV-infected endothelial cell proliferation. These results demonstrate that the similarity of KS lesion cells to neuroendocrine tumors is probably a result of KSHV infection-induced transformation of nonneuronal endothelial cells into cells with neuroendocrine features. These studies suggest a potential role of neuroendocrine pathway genes in the pathobiological characteristics of KSHV-infected endothelial cells, including a potential mechanism of escape from the host immune system by the expression of immunologically privileged neuronal-site NE genes, and NE genes could potentially serve as markers for KSHV-infected KS lesion endothelial cells as well as novel therapeutic targets to control KS lesions.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates several cellular pathways for its survival advantage during its latency in the infected human host. Here, we demonstrate that KSHV infection upregulates the expression of genes related to neuronal and neuroendocrine (NE) functions that are characteristic of NE tumors, both in vitro and in KS patient tissues and the heterogeneity of neuroendocrine receptors having opposing roles in KSHV-infected cell proliferation. Induction of NE genes by KSHV could also provide a potential survival advantage, as the expression of proteins at immunologically privileged sites such as neurons on endothelial cells may be an avenue to escape host immune surveillance functions. The NE gene products identified here could serve as markers for KSHV-infected cells and could potentially serve as therapeutic targets to combat KSHV-associated KS.


Assuntos
Carcinoma Neuroendócrino/genética , Células Endoteliais/virologia , Regulação Neoplásica da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Carcinoma Neuroendócrino/patologia , Linhagem Celular , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Infecções por Herpesviridae/patologia , Humanos , Fases de Leitura Aberta/genética , Hormônios Peptídicos/genética , Fosfopiruvato Hidratase/genética , Receptores Histamínicos/genética , Receptores de Somatostatina/genética , Proteínas Repressoras/genética , Ubiquitina Tiolesterase/genética , Regulação para Cima , Proteínas Virais/genética , Latência Viral/genética , Latência Viral/fisiologia
8.
Front Microbiol ; 10: 358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915039

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) infection, particularly latent infection is often associated with inflammation. The arachidonic acid pathway, the home of several inflammation and resolution associated lipid mediators, is widely altered upon viral infections. Several in vitro studies show that these lipid mediators help in the progression of viral pathogenesis. This review summarizes the findings related to human herpesvirus KSHV infection and arachidonic acid pathway metabolites. KSHV infection has been shown to promote inflammation by upregulating cyclooxygenase-2 (COX-2), 5 lipoxygenase (5LO), and their respective metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) to promote latency and an inflammatory microenvironment. Interestingly, the anti-inflammatory lipid mediator lipoxin is downregulated during KSHV infection to facilitate infected cell survival. These studies aid in understanding the role of arachidonic acid pathway metabolites in the progression of viral infection, the host inflammatory response, and pathogenesis. With limited therapeutic options to treat KSHV infection, use of inhibitors to these inflammatory metabolites and their synthetic pathways or supplementing anti-inflammatory lipid mediators could be an effective alternative therapeutic.

9.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787155

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV)-induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is essential for both the expression of viral genes (latency) and modulation of the host antioxidant machinery. Reactive oxygen species (ROS) are also regulated by the ubiquitously expressed HACE1 protein (HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1), which targets the Rac1 protein for proteasomal degradation, and this blocks the generation of ROS by Rac1-dependent NADPH oxidases. In this study, we examined the role of HACE1 in KSHV infection. Elevated levels of HACE1 expression were observed in de novo KSHV-infected endothelial cells, KSHV latently infected TIVE-LTC and PEL cells, and Kaposi's sarcoma skin lesion cells. The increased HACE1 expression in the infected cells was mediated by KSHV latent protein kaposin A. HACE1 knockdown resulted in high Rac1 and Nox 1 (NADPH oxidase 1) activity, increased ROS (oxidative stress), increased cell death, and decreased KSHV gene expression. Loss of HACE1 impaired KSHV infection-induced phosphoinositide 3-kinase (PI3-K), protein kinase C-ζ (PKC-ζ), extracellular signal-regulated kinase 1/2 (ERK1/2), NF-κB, and Nrf2 activation and nuclear translocation of Nrf2, and it reduced the expression of Nrf2 target genes responsible for balancing the oxidative stress. In the absence of HACE1, glutamine uptake increased in the cells to cope with the KSHV-induced oxidative stress. These findings reveal for the first time that HACE1 plays roles during viral infection-induced oxidative stress and demonstrate that HACE1 facilitates resistance to KSHV infection-induced oxidative stress by promoting Nrf2 activity. Our studies suggest that HACE1 could be a potential target to induce cell death in KSHV-infected cells and to manage KSHV infections.IMPORTANCE ROS play important roles in several cellular processes, and increased ROS cause several adverse effects. KSHV infection of endothelial cells induces ROS, which facilitate virus entry by amplifying the infection-induced host cell signaling cascade, which, in turn, induces the nuclear translocation of phospho-Nrf2 protein to regulate the expression of antioxidative genes and viral genes. The present study demonstrates that KSHV infection induces the E3 ligase HACE1 protein to regulate KSHV-induced oxidative stress by promoting the activation of Nrf2 and nuclear translocation. Absence of HACE1 results in increased ROS and cellular death and reduced nuclear Nrf2, antioxidant, and viral gene expression. Together, these studies suggest that HACE1 can be a potential target to induce cell death in KSHV-infected cells.


Assuntos
Células Endoteliais/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ubiquitina-Proteína Ligases/biossíntese , Linhagem Celular , Células Endoteliais/patologia , Células Endoteliais/virologia , Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/genética , Humanos , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717356

RESUMO

Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.


Assuntos
Metabolismo dos Lipídeos , Neoplasias/metabolismo , Viroses/metabolismo , Animais , Ácido Araquidônico/metabolismo , Biomarcadores , Colesterol/biossíntese , Metabolismo Energético , Ácido Graxo Sintases/metabolismo , Ácidos Fíbricos/efeitos adversos , Ácidos Fíbricos/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Redes e Vias Metabólicas , Neoplasias/etiologia , PPAR alfa/agonistas , Transdução de Sinais , Viroses/complicações , Viroses/virologia
11.
Oncotarget ; 9(91): 36392-36405, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30555637

RESUMO

As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.

12.
Oncotarget ; 9(61): 31920-31936, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30159133

RESUMO

Endoplasmic reticulum (ER) stress can be activated by various pathological and physiological conditions including the unfolded protein response (UPR) to restore homeostasis. The UPR signaling pathways initiated by double-stranded RNA-activated protein kinase (PKR) like ER kinase (PERK), inositol requiring enzyme 1 α (IRE1α), and activating transcription factor 6 (ATF6) are vital for tumor growth, aggressiveness, microenvironment remodeling, and resistance to cancer therapeutics. This review focuses on the role of ER stress and activity of UPR signaling pathways involved in tumor formation and uncontrolled cell proliferation during various cancers and viral malignancies.

13.
J Leukoc Biol ; 102(5): 1229-1235, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28848043

RESUMO

T cell activation and effector function is characterized by changes in metabolism. Altered metabolism is common to almost all types of activated T cells, but fatty acid synthesis seems to especially drive the formation of Th17 cells. Indeed, research has demonstrated that inhibition of early fatty acid synthesis through targeting of acetyl-CoA carboxylase (ACC1) can inhibit Th17 cell formation and instead promote the generation of regulatory T cells. Fatty acid synthase (FASN) is downstream of ACC, and previous studies have shown that FASN activity influences both cancer and inflammation. However, it remains to be determined whether FASN is a viable target for inhibiting Th17 cell function. Here, we demonstrate that FASN is a critical metabolic control for the generation of inflammatory subsets of Th17 cells. Conversely, inhibiting FASN function promotes IFN-γ production by Th1 and Th1-like Th17 cells. In vivo, inhibition of FASN, specifically in Th17 cells, leads to reduction of experimental autoimmune encephalomyelitis disease. These studies demonstrate the necessity of FASN in the autoimmune inflammatory function of Th17 cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Ácido Graxo Sintase Tipo I/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Células Th17/imunologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Regulação da Expressão Gênica , Humanos , Interferon gama/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucina-23/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Cultura Primária de Células , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/patologia , Células Th17/efeitos dos fármacos , Células Th17/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
14.
J Virol ; 90(24): 11020-11031, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27681120

RESUMO

Lipoxins are host anti-inflammatory molecules that play a vital role in restoring tissue homeostasis. The efficacy of lipoxins and their analog epilipoxins in treating inflammation and its associated diseases has been well documented. Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) are two well-known inflammation related diseases caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Controlling inflammation is one of the strategies adopted to treat KS and PEL, a primary motivation for exploring and evaluating the therapeutic potential of using lipoxins. This study documents how KSHV manipulates and downregulates the secretion of the anti-inflammatory lipoxin A4 in host cells and the viral factors involved in this process using in vitro KS and PEL cells as models. The presence of the lipoxin A4 receptor/formyl peptidyl receptor (ALX/FPR) in KS patient tissue sections and in vitro KS and PEL cell models offers a novel possibility for treating KS and PEL with lipoxins. Treating de novo KSHV-infected endothelial cells with lipoxin and epilipoxin creates an anti-inflammatory environment by decreasing the levels of NF-κB, AKT, ERK1/2, COX-2, and 5-lipoxygenase. Lipoxin treatment on CRISPR/CAS9 technology-mediated ALX/FPR gene deletion revealed the importance of the lipoxin receptor ALX for effective lipoxin signaling. A viral microRNA (miRNA) cluster was identified as the primary factor contributing to the downregulation of lipoxin A4 secretion in host cells. The KSHV miRNA cluster probably targets enzyme 15-lipoxygenase, which is involved in lipoxin A4 synthesis. This study provides a new insight into the potential treatment of KS and PEL using nature's own anti-inflammatory molecule, lipoxin. IMPORTANCE: KSHV infection has been shown to upregulate several host proinflammatory factors, which aid in its survival and pathogenesis. The influence of KSHV infection on anti-inflammatory molecules is not well studied. Since current treatment methods for KS and PEL are fraught with unwanted side effects and low efficiency, the search for new therapeutics is therefore imperative. The use of nature's own molecule lipoxin as a drug is promising. This study opens up new domains in KSHV research focusing on how the virus modulates lipoxin secretion and warrants further investigation of the therapeutic potential of lipoxin using in vitro cell models for KS and PEL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno , Lipoxinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Humanos , Inflamação , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/imunologia , Linfoma de Efusão Primária/patologia , Linfoma de Efusão Primária/virologia , MicroRNAs/genética , MicroRNAs/imunologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , RNA Viral/genética , RNA Viral/imunologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-27450483

RESUMO

Several studies shed light on the size and diversity of the lipidome, along with its role in physiological and pathological processes in human health. Besides that, lipids also function as important signaling mediators. This review focuses on discussing the role of arachidonic acid (AA) derived lipids as mediators in diseases with special emphasis on viral infections. Structurally, arachidonic acid derived lipids, also referred to as lipid mediators, can be classified into three specific classes: Class 1-eicosanoids derived from arachidonic acid metabolism; Class 2-lysophospholipids consisting of either a glycerol or a sphingosine backbone; Class 3-AA and ω-3 polyunsaturated fatty acid (PUFA) derivatives. Class 1 and 2 lipids are commonly referred to as pro-inflammatory molecules, which are found upregulated in diseases like cancer and viral infection. Class 3 lipids are anti-inflammatory molecules, which could be potentially used in treatment of diseases associated with inflammation. The function of each class has been elucidated as unique and contributory to an overall cellular homeostasis. Current work in this field is promising and will surely usher in a new era of lipid understanding and control not only at the molecular level, but also in terms of holistic patient care.


Assuntos
Ácido Araquidônico/metabolismo , Neoplasias/metabolismo , Humanos , Inflamação/metabolismo
16.
Oncotarget ; 7(37): 58953-58974, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27270654

RESUMO

The crosstalk between malignant and nonmalignant cells in the tumor microenvironment, as maneuvered by cytokines/chemokines, drives breast cancer progression. In our previous study, we discovered Osteoprotegerin (OPG) as one of the cytokines heavily secreted by breast cancer cells. We demonstrated that OPG is expressed and secreted at very high levels from the highly invasive breast cancer cell lines SUM149PT and SUM1315MO2 as compared to normal human mammary epithelial HMEC cells. OPG was involved in modulating aneuploidy, cell proliferation, and angiogenesis in breast cancer. Mass spectrometry analysis performed in this study revealed OPG interacts with fatty acid synthase (FASN), which is a key enzyme of the fatty acid biosynthetic pathway in breast cancer cells. Further, electron microscopy, immunofluorescence, and fluorescence quantitation assays highlighted the presence of a large number of lipid bodies (lipid droplets) in SUM149PT and SUM1315MO2 cells in comparison to HMEC. We recently showed upregulation of the COX-2 inflammatory pathway and its metabolite PGE2 secretion in SUM149PT and SUM1315MO2 breast cancer cells. Interestingly, human breast cancer tissue samples displayed high expression of OPG, PGE2 and fatty acid synthase (FASN). FASN is a multifunctional enzyme involved in lipid biosynthesis. Immunofluorescence staining revealed the co-existence of COX-2 and FASN in the lipid bodies of breast cancer cells. We reasoned that there might be crosstalk between OPG, FASN, and COX-2 that sustains the inflammatory pathways in breast cancer. Interestingly, knocking down OPG by CRISPR/Cas9 gene editing in breast cancer cells decreased FASN expression at the protein level. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 and FASN by recombinant human OPG (rhOPG). Treatment with FASN inhibitor C75 and COX-2 inhibitor celecoxib individually decreased the number of lipid bodies/cell, downregulated phosphorylation of ERK, GSK3ß, and induced apoptosis by caspase-3/7 and caspase-9 activation. But a more efficient and effective decrease in lipid bodies/cell and survival kinase signaling was observed upon combining the drug treatments for the aggressive cancer cells. Collectively, the novel biological crosstalk between OPG, FASN, and COX-2 advocates for combinatorial drug treatment to block these players of carcinogenesis as a promising therapeutic target to treat highly invasive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Graxo Sintases/metabolismo , Osteoprotegerina/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinogênese , Caspase 9/metabolismo , Celecoxib/farmacologia , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Feminino , Humanos , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Ligação Proteica , Receptor Cross-Talk , Transdução de Sinais , Microambiente Tumoral
17.
Oncotarget ; 7(27): 42777-42791, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27072583

RESUMO

Osteoprotegerin (OPG) is a soluble decoy receptor for tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL). It belongs to the tumor necrosis factor receptor superfamily (TNFRSF). OPG was initially discovered to contribute to homeostasis of bone turnover due to its capability of binding to receptor activator of nuclear factor-kappaB (NF-kB). However, apart from bone turnover, OPG plays important and diverse role(s) in many biological functions. Besides having anti-osteoclastic activity, OPG is thought to exert a protective anti-apoptotic action in OPG-expressing tumors by overcoming the physiologic mechanism of tumor surveillance exerted by TRAIL. Along with inhibiting TRAIL induced apoptosis, it can induce proliferation by binding to various cell surface receptors and thus turning on the canonical cell survival and proliferative pathways. OPG also induces angiogenesis, one of the hallmarks of cancer, thus facilitating tumor growth. Recently, the understanding of OPG and its different roles has been augmented substantially. This review is aimed at providing a very informative overview as to how OPG affects cancer progression especially breast cancer.


Assuntos
Osteoprotegerina/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Camundongos , NF-kappa B/metabolismo , Metástase Neoplásica , Neovascularização Patológica , Polimorfismo Genético , Ligante RANK/metabolismo , Resultado do Tratamento
18.
Oncotarget ; 7(13): 15577-99, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26621841

RESUMO

Inflammatory and invasive breast cancers are aggressive and require better understanding for the development of new treatments and more accurate prognosis. Here, we detected high expression of PPARα in human primary inflammatory (SUM149PT) and highly invasive (SUM1315MO2) breast cancer cells, and tissue sections of human breast cancer. PPARα ligands are clinically used to treat dyslipidemia. Among lipid lowering drugs clofibrate, fenofibrate and WY14643, clofibrate showed high chemo-sensitivity towards breast cancer cells. Clofibrate treatment significantly induced PPARα DNA binding activity, and remarkably reduced cyclooxygenase-2/PGE2 and 5-lipoxygenase/LTB4 inflammatory pathways. Clofibrate treatment reduced the proliferation of breast cancer cells probably by inhibiting NF-κB and ERK1/2 activation, reducing cyclinD1, cyclinA, cyclinE, and inducing pro-apoptotic P21 levels. Surprisingly, the expression of lipogenic pathway genes including SREBP-1c (sterol regulatory element-binding protein-1c), HMG-CoA synthase, SPTLC1 (serine palmitoyltransferase long-chain), and Acyl-CoA oxidase (ACO) decreased with a concurrent increase in fatty acid oxidation genes such as CPT-1a (carnitine palmitoyltransferase 1a) and SREBP-2 (Sterol regulatory element-binding protein-2). Clofibrate treatment induced secretion of free fatty acids and effectively decreased the level of phosphorylated active form of fatty acid synthase (FASN), an enzyme catalyzing de novo synthesis of fatty acids. High level of coactivators steroid receptor coactivator-1 (SRC-1) and histone acetylase CBP-300 (CREB binding protein-300) were observed in the nuclear complexes of clofibrate treated breast cancer cells. These findings implicate that stimulating PPARα by safe, well-tolerated, and clinically approved clofibrate may provide a safer and more effective strategy to target the signaling, lipogenic, and inflammatory pathways in aggressive forms of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Clofibrato/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/agonistas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos
19.
BMC Cancer ; 15: 935, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608463

RESUMO

BACKGROUND: Osteoprotegerin (OPG) is a glycoprotein that has multifaceted role and is associated with several cancer malignancies like that of bladder carcinoma, gastric carcinoma, prostate cancer, multiple myeloma and breast cancer. Also OPG has been associated with several organ pathologies. The widespread expression of OPG suggests that OPG may have multiple biological activities that are yet to be explored. METHODS: The anchorage-independent sphere cultures of the adherent cells were instrumental in our study as it provided a deeper insight into the complexity of a 3D tumor. Cytokine profiling was performed for OPG's detection in the microenvironment. ELISA and western blotting were performed to quantify the OPG secretion and measure the protein levels respectively. OPG expression was detected in human breast cancer tissue samples by IHC. To decipher OPG's role in tumor aggressiveness both recombinant human OPG as well as OPG rich and depleted breast cancer cell conditioned media were tested. Western blotting and MTT assay were performed to detect changes in signaling pathways and proliferation that were induced in presence of OPG. Onset of aneuploidy, in presence of OPG, was measured by cell cycle analysis and western blotting. Finally, human Breast Cancer qBiomarker Copy Number PCR Array was used to detect how OPG remarkably induced gene copy numbers for oncogenic pathway regulators. RESULTS: SUM149PT and SUM1315M02 cells secrete high levels of the cytokine OPG compared to primary human mammary epithelial cells (HMEC). High expression of OPG was also detected in human breast cancer tissue samples compared to the uninvolved tissue from the same patient. OPG induced proliferation of control HMEC spheres and triggered the onset of aneuploidy in HMEC sphere cultures. OPG induced the expression of aneuploidy related kinases Aurora-A Kinase (IAK-1), Bub1 and BubR1 probably through the receptor activator of nuclear factor kappa-B ligand (RANKL) and syndecan-1 receptors via the Erk, AKT and GSK3(3 signaling pathway. Gene copy numbers for oncogenic pathway regulators such AKT1, Aurora-A Kinase (AURKA or IAK-1), epidermal growth factor receptor (EGFR) and MYC with a reduction in the copy numbers of cyclin dependent kinase inhibitor 2A (CDKN2A), PTEN and DNA topoisomerase 2 alpha (TOP2A) were induced in presence of OPG. CONCLUSIONS: These results highlight the role of OPG in reprogramming normal mammary epithelial cells to a tumorigenic state and suggest promising avenues for treating inflammatory breast cancer as well as highly invasive breast cancer with new therapeutic targets.


Assuntos
Aneuploidia , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Osteoprotegerina/metabolismo , Neoplasias da Mama/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Microambiente Tumoral
20.
J Inflamm Res ; 8: 181-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457057

RESUMO

An effective host defense mechanism involves inflammation to eliminate pathogens from the site of infection, followed by the resolution of inflammation and the restoration of tissue homeostasis. Lipoxins are endogenous anti-inflammatory, pro-resolving molecules that play a vital role in reducing excessive tissue injury and chronic inflammation. In this review, the mechanisms of action of lipoxins at the site of inflammation and their interaction with other cellular signaling molecules and transcription factors are discussed. Emphasis has also been placed on immune modulatory role(s) of lipoxins. Lipoxins regulate components of both the innate and adaptive immune systems including neutrophils, macrophages, T-, and B-cells. Lipoxins also modulate levels of various transcription factors such as nuclear factor κB, activator protein-1, nerve growth factor-regulated factor 1A binding protein 1, and peroxisome proliferator activated receptor γ and control the expression of many inflammatory genes. Since lipoxins and aspirin-triggered lipoxins have clinical relevance, we discuss their important role in clinical research to treat a wide range of diseases like inflammatory disorders, renal fibrosis, cerebral ischemia, and cancer. A brief overview of lipoxins in viral malignancies and viral pathogenesis especially the unexplored role of lipoxins in Kaposi's sarcoma-associated herpes virus biology is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...