Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 87(1): 49-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18547562

RESUMO

Epidemiological studies indicated a link between high temperature environment and cataract. The purpose of the study was to investigate if the high temperature in neighborhood bakeries can cause damage to the eye lens. Measurements were done to determine the temperature and exposure time in the neighborhood bakeries during a workday. Thermal analysis was done using finite volume and finite element Computational Fluid Dynamics (CFD) codes in order to determine the temperature in the eye lens when exposed to environmental temperature fluctuations. A simulation of heat exposure was carried out using a bovine lens organ culture system. Two-hundred and seventy bovine lenses were divided into five groups. (1) Control group kept in culture for 11-14 days (2) Lenses exposed to 39.5 degrees C, 6h daily starting on the second day of the culture and kept in culture for 13 days (3) Lenses exposed to 39.5 degrees C, 4h daily starting on the second day of the culture and kept in culture for 11 days (4) Lenses exposed to 39.5 degrees C, 2h daily for 3 days starting on the second day of the culture and kept in culture for 12 days (5) Lenses exposed to 39.5 degrees C, 1h on the second day of the culture and kept in culture for 14 days. Lens optical quality was assessed during the culture period. At the end of the culture lens damage was demonstrated by inverted microscopy. Lens epithelial samples were taken for analysis of Catalase activities. Control lenses maintained their optical quality throughout the 14 days of the culture. Exposure to heat caused optical damage to the cultured lenses. The damage appeared earlier in the 6h exposure group and progressed from the lens anterior suture to its center. Optical damage was recovered in lenses exposed 1h to 39.5 degrees C, but the damage remained in the lens epithelial cells. Our study indicates that exposure to heat in bakeries can cause damage to the eye lens and that the damage is dependent on the length of exposure.


Assuntos
Temperatura Alta/efeitos adversos , Cristalino/patologia , Animais , Estudos de Casos e Controles , Catalase/metabolismo , Bovinos , Modelos Animais de Doenças , Epitélio/patologia , Epitélio/efeitos da radiação , Serviços de Alimentação , Humanos , Cristalino/efeitos da radiação , Exposição Ocupacional/efeitos adversos
2.
Open Ophthalmol J ; 2: 102-6, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19517034

RESUMO

High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5°C for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...