Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(21): eadm7668, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781328

RESUMO

High water recovery is crucial to inland desalination but is impeded by mineral scaling of the membrane. This work presents a two-step modification approach for grafting high-density zwitterionic pseudo-bottle-brushes to polyamide reverse osmosis membranes to prevent scaling during high-recovery desalination of brackish water. Increasing brush density, induced by increasing reaction time, correlated with reduced scaling. High-density grafting eliminated gypsum scaling and almost completely prevented silica scaling during desalination of synthetic brackish water at a recovery ratio of 80%. Moreover, scaling was effectively mitigated during long-term desalination of real brackish water at a recovery ratio of 90% without pretreatment or antiscalants. Molecular dynamics simulations reveal the critical dependence of the membrane's silica antiscaling ability on the degree to which the coating screens the membrane surface from readily forming silica aggregates. This finding highlights the importance of maximizing grafting density for optimal performance and advanced antiscaling properties to allow high-recovery desalination of complex salt solutions.

2.
Environ Res ; 247: 118287, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266902

RESUMO

Hydrothermal carbonization may be a sustainable sanitary treatment for wet organic waste including human excreta. Human-excreta-derived hydrochar properties differ from those of typical wet biomass due to the formation of a biocrude-like phase at low reaction temperatures. This study characterized the importance of this phase in terms of hydrochar combustion properties and potential agricultural use. Hydrothermal carbonization of raw human excreta was undertaken at 180, 210, and 240 °C, after which the biocrude phase was extracted with dichloromethane. Physicochemical properties, surface-area parameters, combustion profiles, and gas emissions of non-extracted hydrochar, biocrude, and extracted hydrochar were compared. The potential agricultural use of extracted hydrochar was assessed in germination experiments. Biocrude comprised up to 49.5% of hydrochar mass with a calorific value of >60% that of extracted hydrochar. Biocrude combustion properties were better than those of hydrochar, before and after extraction as demonstrated by higher combustion index value (Si). The extracted hydrochar surface area (34.7 m2 g-1) was greater than that of non-extracted hydrochar (<2 m2 g-1), and seeds germinated more readily due to the lower phytotoxin content. Most macro and micronutrients required for plant growth were retained in the extracted hydrochar. The extraction of biocrude from human-excreta-derived hydrochar not only provided a higher-quality fuel with enhanced combustion properties but also improved hydrochar characteristics, suggesting its potential as a soil additive for enhanced plant growth.


Assuntos
Biocombustíveis , Carbono , Humanos , Carbono/química , Temperatura , Temperatura Baixa , Sementes
3.
Environ Res ; 231(Pt 1): 115999, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105294

RESUMO

The main reason for the deterioration of membrane operation during water purification processes is biofouling, which has therefore been extensively studied. Biofouling was shown to reduce membrane performance reflected by permeate flux decline, reduced selectivity, membrane biodegradation, and consequently, an increase in energy consumption. Studies of biofouling focused on the identification of the assembled microbial communities, the excretion of extracellular polymeric substances (EPS), and their combined role in reduced membrane performance and lifetime. However, the link between the structure and function of biofouling communities has not been elucidated to date. Here, we provide a novel insight, suggesting that bacterial functions rather than composition control biofouling traits on reverse osmosis (RO) membranes. We studied the potential activity of RO biofilms at metatranscriptome resolution, accompanied by the morphology and function of the biofouling layer over time, including microscopy and EPS composition, adhesion, and viscoelastic properties. To that end, we cultivated natural multispecies biofilms in RO membranes under treated wastewater flow and extracted RNA to study their taxonomies and gene expression profiles. Concomitantly, the biofilm structure was visualized using both scanning electron microscopy and laser scanning confocal microscopy. We also used quartz crystal microbalance with dissipation to characterize the affinity of EPS to membrane-mimetic sensors and evaluated the viscoelasticity of the Ex-Situ EPS layer formed on the sensor. Our results showed that different active bacterial taxa across five taxonomic classes were assembled on the RO membrane, while the composition shifted between 48 and 96 h. However, regardless of the composition, the maturation of the biofilm resulted in the expression of similar gene families tightly associated with the temporal kinetics of the EPS composition, adhesion, and viscoelasticity. Our findings highlight the temporal selection of specific microbial functions rather than composition, featuring the adhesion kinetics and viscoelastic properties of the RO biofilm.


Assuntos
Incrustação Biológica , Purificação da Água , Membranas Artificiais , Biofilmes , Bactérias/genética , Purificação da Água/métodos , Osmose
4.
ACS Appl Bio Mater ; 6(2): 883-890, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36692432

RESUMO

Laser-induced graphene (LIG) is a method of generating a foam-like conformal carbon layer of porous graphene on many types of carbon-based surfaces. This electrically conductive material has been shown to be useful in many applications including environmental technology and includes low fouling and antimicrobial surfaces and can address persistent environmental challenges spawned by bacterial and viral contaminates. Here, we show that a single film of LIG stores charge when an electrical current is applied and dissipates charge when the current is stopped, which results in electricidal surface antibacterial potency. The amount of accumulated and dissipated charge on a single strip of LIG was quantified with an electrometer by generating LIG on both sides of a nonconducting polyimide film, which showed up to 65 pC of charge when the distance between the surfaces was 94 µm corresponding to an areal capacitance of 1.63 pF/cm2. We further corroborate the stored charge decay of a single LIG strip with bacteria death via direct electrical contact. Antimicrobial rates decreased with the same monotonic pattern as the loss of charge from the LIG film (i.e., AR ∼ 97% 0 s after voltage source disconnection vs AR ∼ 21% 90 s after disconnection) showing bacterial death as a function of delayed LIG exposure time after applied voltage disconnection. In terms of energy efficiency, this translates to an increased bacteria potency of ∼170% for the equivalent energy costs as that previously estimated. Finally, we present a mechanistic explanation for the capacitive behavior and the electricidal effects for a single plate of LIG.


Assuntos
Grafite , Grafite/farmacologia , Carbono , Antibacterianos/farmacologia , Bactérias , Lasers
5.
Environ Sci Technol ; 56(20): 14763-14773, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197031

RESUMO

Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Ultrafiltração , Adsorção , Concentração de Íons de Hidrogênio , Ressonância de Plasmônio de Superfície
6.
Water Res ; 215: 118231, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247603

RESUMO

Circumstantial evidence has suggested that jellyfish swarms impair the operation of seawater reverse osmosis desalination facilities. However, only limited information is currently available on the pretreatment efficiency of jellyfish and their effects on reverse osmosis (RO) membrane performance. Here, we have comprehensively tested the pretreatment efficiency of a dual-media gravity filter and cartridge micro-filtration following the addition of jellyfish into the feedwater. Concurrently, the fouling propensity and performance of the RO membranes were examined. We show that jellyfish demise resulted in seawater eutrophication that triggered a significant increase in bacterial biomass (∼50-fold), activity (∼7-fold), and release of transparent exopolymer particles (∼5-fold), peaking three days after the addition of jellyfish into the feedwater. In parallel, a significant reduction in permeate water flux was recorded (∼10%) while trans-membrane pressure sharply increased (15%), reaching the operation pressure limit of our system (75 bar) after five days. At the conclusion of the experiments, the membrane surface was heavily covered by large chunks of organic-rich material and multilayered biofilms. Our results provide a holistic view on the operational challenges of seawater reverse osmosis (SWRO) desalination triggered by jellyfish swarms in coastal areas. Following the above, it can be inferred that freshwater production will likely be halted three days after drawing the jellyfish into the pretreatment system. Outcomes from these results may lead to the development of science-based operational protocols to cope with growing occurrence of jellyfish swarms around the intake of SWRO desalination facilities worldwide.


Assuntos
Purificação da Água , Filtração , Membranas Artificiais , Osmose , Água do Mar , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...