Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 8: 89, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18713465

RESUMO

BACKGROUND: Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in Al-resistant and Al-sensitive lines of the model legume, Medicago truncatula Gaertn. RESULTS: A screen for Al resistance in 54 M. truncatula accessions identified eight Al-resistant and eight Al-sensitive lines. Comparisons of hydroponic root growth and root tip hematoxylin staining in an Al-resistant line, T32, and an Al-sensitive line, S70, provided evidence that an inducible Al exclusion mechanism occurs in T32. Transcriptional events associated with the Al resistance response were analyzed in T32 and S70 after 12 and 48 h Al treatment using oligonucleotide microarrays. Fewer genes were differentially regulated in response to Al in T32 compared to S70. Expression patterns of oxidative stress-related genes, stress-response genes and microscopic examination of Al-treated root tips suggested a lower degree of Al-induced oxidative damage to T32 root tips compared to S70. Furthermore, genes associated with cell death, senescence, and cell wall degradation were induced in both lines after 12 h of Al treatment but preferentially in S70 after 48 h of Al treatment. A multidrug and toxin efflux (MATE) transporter, previously shown to exude citrate in Arabidopsis, showed differential expression patterns in T32 and S70. CONCLUSION: Our results identified novel genes induced by Al in Al-resistant and sensitive M. truncatula lines. In T32, transcription levels of genes related to oxidative stress were consistent with reactive oxygen species production, which would be sufficient to initiate cell death of Al-accumulating cells thereby contributing to Al exclusion and root growth recovery. In contrast, transcriptional levels of oxidative stress-related genes were consistent with excessive reactive oxygen species accumulation in S70 potentially resulting in necrosis and irreversible root growth inhibition. In addition, a citrate-exuding MATE transporter could function in Al exclusion and/or internal detoxification in T32 based on Al-induced transcript localization studies. Together, our findings indicate that multiple responses likely contribute to Al resistance in M. truncatula.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/farmacologia , Resistência a Medicamentos , Medicago truncatula/efeitos dos fármacos , Alumínio/metabolismo , Morte Celular/efeitos dos fármacos , Resistência a Medicamentos/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
2.
Planta ; 228(1): 151-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18351384

RESUMO

Oligonucleotide microarrays corresponding to over 16,000 genes were used to analyze changes in transcript accumulation in root tips of the Al-sensitive Medicago truncatula cultivar Jemalong genotype A17 in response to Al treatment. Out of 2,782 genes with significant changes in transcript accumulation, 324 genes were up-regulated and 267 genes were down-regulated at least twofold by Al. Up-regulated genes were enriched in transcripts involved in cell-wall modification and abiotic and biotic stress responses while down-regulated genes were enriched in transcripts involved in primary metabolism, secondary metabolism, protein synthesis and processing, and the cell cycle. Known markers of Al-induced gene expression including genes associated with oxidative stress and cell wall stiffening were differentially regulated in this study. Transcript profiling identified novel genes associated with processes involved in Al toxicity including cell wall modification, cell cycle arrest and ethylene production. Novel genes potentially associated with Al resistance and tolerance in M. truncatula including organic acid transporters, cell wall loosening enzymes, Ca(2+) homeostasis maintaining genes, and Al-binding were also identified. In addition, expression analysis of nine genes in the mature regions of the root revealed that Al-induced gene expression in these regions may play a role in Al tolerance. Finally, interfering RNA-induced silencing of two Al-induced genes, pectin acetylesterase and annexin, in A17 hairy roots slightly increased the sensitivity of A17 to Al suggesting that these genes may play a role in Al resistance.


Assuntos
Alumínio/toxicidade , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/genética , Adaptação Fisiológica/genética , Anexinas/genética , Resistência a Medicamentos/genética , Esterases/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Plantas/genética , Raízes de Plantas/genética , Interferência de RNA , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
3.
Mol Plant Pathol ; 8(3): 307-19, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-20507501

RESUMO

SUMMARY Powdery mildew is an economically important disease in a number of crop legumes; however, little is known about resistance to the disease in these species. To gain a better understanding of the genetics of resistance and plant responses to powdery mildew in legumes, we developed a pathosystem with Medicago truncatula and Erysiphe pisi. Screening accessions of M. truncatula identified genotypes that are highly susceptible, moderately resistant and highly resistant to the fungus. In the highly resistant genotype, fungal growth was arrested after appressorium development with no colony formation, while in the moderately resistant genotype a small number of colonies formed. Both resistant and moderately resistant genotypes produced hydrogen peroxide and fluorescent compounds at pathogen penetration sites, consistent with a hypersensitive response (HR), although the response was delayed in the moderately resistant genotype. Very little hydrogen peroxide or fluorescence was detected in the susceptible accession. Microarray analysis of E. pisi-induced early transcriptional changes detected 55 genes associated with the basal defence response that were similarly regulated in all three genotypes. These included pathogenesis-related genes and other genes involved in defence, signal transduction, senescence, cell wall metabolism and abiotic stress. Genes associated with the HR response included flavonoid pathway genes, and others involved in transport, transcription regulation and signal transduction. A total of 34 potentially novel unknown genes, including two legume-specific genes, were identified in both the basal response and the HR categories. Potential binding sites for two defence-related transcription regulators, Myb and Whirly, were identified in promoter regions of induced genes, and four novel motifs were found in promoter regions of genes repressed in the resistant interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...