Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Infect Dis ; 23(1): 806, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974125

RESUMO

BACKGROUND: Since its beginnings in 2019, the COVID-19 pandemic is still a problem of global medical concern. Southern Vietnam is one of the country's vast regions, including 20 provinces and the densely populated metropolis Ho Chi Minh City. A randomized retrospective study was performed to investigate the epidemiology and genetic diversity of COVID-19. Whole-genome sequencing of 126 SARS-CoV-2 samples collected from Southern Vietnam between January 2020 and December 2021 revealed the main circulating variants and their distribution. METHODS: Epidemiological data were obtained from the Department of Preventive Medicine of the Vietnamese Ministry of Health. To identify circulating variants, RNA, extracted from 126 nasopharyngeal swabs of patients with suspected COVID-19 were sequenced on Illunina MiSeq to obtain near complete genomes SARS-CoV-2. RESULTS: Due to the effectiveness of restrictive measures in Vietnam, it was possible to keep incidence at a low level. The partial relaxation of restrictive measures, and the spread of Delta lineages, contributed to the beginning of a logarithmic increase in incidence. Lineages 20A-H circulated in Southern Vietnam during 2020. Spread of the Delta lineage in Southern Vietnam began in March 2021, causing a logarithmic rise in the number of COVID-19 cases. CONCLUSIONS: Pandemic dynamics in Southern Vietnam feature specific variations in incidence, and these reflect the success of the restrictive measures put in place during the early stages of the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Variação Genética , Pandemias , Estudos Retrospectivos , SARS-CoV-2/genética , Vietnã/epidemiologia
3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430621

RESUMO

This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Humanos , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-27/genética , Interleucina-27/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , SARS-CoV-2/genética
4.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012323

RESUMO

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/imunologia , Quimiocina CXCL10 , Quimiocinas/sangue , Humanos , Interleucina-8 , Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...