Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Immunol ; 14: 1281705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022545

RESUMO

Objective: The aim of this study was to systematically review the neuroimmunology literature to determine the average immune cell counts reported by flow cytometry in wild-type (WT) homogenized mouse brains. Background: Mouse models of gene dysfunction are widely used to study age-associated neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The importance of the neuroimmune system in these multifactorial disorders has become increasingly evident, and methods to quantify resident and infiltrating immune cells in the brain, including flow cytometry, are necessary. However, there appears to be no consensus on the best approach to perform flow cytometry or quantify/report immune cell counts. The development of more standardized methods would accelerate neuroimmune discovery and validation by meta-analysis. Methods: There has not yet been a systematic review of 'neuroimmunology' by 'flow cytometry' via examination of the PROSPERO registry. A protocol for a systematic review was subsequently based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) using the Studies, Data, Methods, and Outcomes (SDMO) criteria. Literature searches were conducted in the Google Scholar and PubMed databases. From that search, 900 candidate studies were identified, and 437 studies were assessed for eligibility based on formal exclusion criteria. Results: Out of the 437 studies reviewed, 58 were eligible for inclusion and comparative analysis. Each study assessed immune cell subsets within homogenized mouse brains and used flow cytometry. Nonetheless, there was considerable variability in the methods, data analysis, reporting, and results. Descriptive statistics have been presented on the study designs and results, including medians with interquartile ranges (IQRs) and overall means with standard deviations (SD) for specific immune cell counts and their relative proportions, within and between studies. A total of 58 studies reported the most abundant immune cells within the brains were TMEM119+ microglia, bulk CD4+ T cells, and bulk CD8+ T cells. Conclusion: Experiments to conduct and report flow cytometry data, derived from WT homogenized mouse brains, would benefit from a more standardized approach. While within-study comparisons are valid, the variability in methods of counting of immune cell populations is too broad for meta-analysis. The inclusion of a minimal protocol with more detailed methods, controls, and standards could enable this nascent field to compare results across studies.


Assuntos
Linfócitos T CD8-Positivos , Projetos de Pesquisa , Animais , Camundongos , Encéfalo , Citometria de Fluxo , Revisões Sistemáticas como Assunto
2.
Mol Metab ; 56: 101417, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902607

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to ß-cell antigens and progressive destruction of insulin-producing ß-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW: Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS: To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 1/genética , Humanos , Sistema Imunitário/patologia , Células Secretoras de Insulina/patologia , Camundongos
3.
Front Immunol ; 12: 739048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603322

RESUMO

Background: The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic ß-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review: In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic ß-cells could potentially promote T1D development. Major Conclusions: We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced ß-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Diferenciação/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Estudos de Associação Genética , Humanos , Imunoterapia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Polimorfismo Genético , Receptores Imunológicos/genética , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Immunol Cell Biol ; 99(5): 496-508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33483996

RESUMO

The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to ß-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único
5.
Microorganisms ; 7(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817071

RESUMO

We previously discovered that single nucleotide polymorphisms (SNPs) in PTPN2/22 (T-cell negative-regulators) occur in 78% of rheumatoid arthritis (RA), along with Mycobacterium avium paratuberculosis (MAP) infection in 33% of patients. In Crohn's disease, we reported that SNPs in TNFα and receptors (TNFRSF1A/TNFRSF1B) benefited intracellular MAP-survival, increased infection, and elevated inflammatory response mimicking the poor response to anti-TNFα treatment in some patients. Here, we studied the frequency and effects of SNPs in TNFα/TNFRSF1A/TNFRSF1B in RA including gene expression, MAP infection, and osteoporosis marker levels in blood (54 RA and 48 healthy controls). TNFα:rs1800629 (GA) was detected in 19/48 (40%) RA and 8/54 (15%) controls (p-value < 0.05, odds ratio (OR) = 3.6, 95% CI: 1.37-9.54). TNFRS1B:rs3397 (CT) was detected in 21/48 (44%) RA and 10/54 (19%) controls (p-value < 0.05, OR = 4.43, 95% CI: 1.73-11.33). In RA, rs3397 downregulated TNFRSF1B expression (CC > CT (0.34 ± 0.14) and CC > TT (0.27 ± 0.12)), compared to wildtype CC (0.51 ± 0.17), p-value < 0.05. MAP DNA was detected significantly in 17/48 (35.4%) RA compared to 11/54 (20.4%) controls (p-value < 0.05, OR = 2.14, 95% CI: 1.12-5.20). The average osteocalcin level was significantly lower (p-value < 0.05) in RA (2.70 ± 0.87 ng/mL), RA + MAP (0.60 ± 0.31 ng/mL), RA + TNFRSF1B:rs3397 (TT) (0.67 ± 0.35 ng/mL), compared to the healthy control (5.31 ± 1.39 ng/mL), and MAP-free RA (3.85 ± 1.31 ng/mL). Overall, rs3397 appears to downregulate TNFRSF1B, increase MAP infection, worsen inflammation, and cause osteocalcin deficiency and possibly osteoporosis in RA.

6.
Gut Pathog ; 10: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534203

RESUMO

BACKGROUND: Several pathogens have been debated to play a role in inflammatory bowel disease (IBD) including Crohn's disease (CD). None of these pathogens have been investigated together in same clinical samples. We developed a multiplex PCR and multi-color fluorescent in situ hybridization (m-FISH) protocols for simultaneous detection of CD-associated pathogens including Mycobacterium avium subspecies paratuberculosis (MAP), Klebsiella pneumoniae, and adherent-invasive Escherichia coli strain LF82. METHODS: The multiplex PCR is based on 1-h DNAzol® extraction protocol modified for rapid extraction of bacterial DNA from culture, blood, and intestinal biopsies. Oligonucleotide primers sequences unique to these pathogens were evaluated individually and in combinations using bioinformatics and experimental approaches. m-FISH was based on fluorescent-tagged oligonucleotides and confocal scanning laser microscopy (CSLM). RESULTS: Following several attempts, the concentration of the oligonucleotide primers and DNA templates and the PCR annealing temperatures were optimized. Multiplex PCR analyses revealed excellent amplification signal in trials where a single primer set and combinations of two and three primers sets were tested against a mixture of DNA from three different bacteria or a mixture of three bacterial cultures mixed in one tube before DNA extraction. Slides with individual and mixtures of bacterial cultures and intestinal tissue sections from IBD patients were tested by m-FISH and the CSLM images verified multiplex PCR results detected on 3% agarose gel. CONCLUSION: We developed a 4-h multiplex PCR protocol, which was validated by m-FISH images, capable of detecting up to four genes from major pathogens associated with CD. The new protocol should serve as an excellent tool to support efforts to study multi-pathogens involved in CD and other autoimmune disease.

7.
World J Gastroenterol ; 24(25): 2764-2775, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29991880

RESUMO

AIM: To perform a meta-analysis on the risk of developing Mycobacterium tuberculosis (TB) infection in Crohn's disease (CD) patients treated with tumor necrosis factor-alpha (TNFα) inhibitors. METHODS: A meta-analysis of randomized, double-blind, placebo-controlled trials of TNFα inhibitors for treatment of CD in adults was conducted. Arcsine transformation of TB incidence was performed to estimate risk difference. A novel epidemiologically-based correction (EBC) enabling inclusions of studies reporting no TB infection cases in placebo and treatment groups was developed to estimate relative odds. RESULTS: Twenty-three clinical trial studies were identified, including 5669 patients. Six TB infection cases were reported across 5 studies, all from patients receiving TNFα inhibitors. Eighteen studies reported no TB infection cases in placebo and TNFα inhibitor treatment arms. TB infection risk was significantly increased among patients receiving TNFα inhibitors, with a risk difference of 0.028 (95%CI: 0.0011-0.055). The odds ratio was 4.85 (95%CI: 1.02-22.99) with EBC and 5.85 (95%CI: 1.13-30.38) without EBC. CONCLUSION: The risk of TB infection is higher among CD patients receiving TNFα inhibitors. Understanding the immunopathogenesis of CD is crucial, since using TNFα inhibitors in these patients could favor mycobacterial infections, particularly Mycobacterium avium subspecies paratuberculosis, which ultimately could worsen their clinical condition.


Assuntos
Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/efeitos adversos , Paratuberculose/epidemiologia , Tuberculose/epidemiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença de Crohn/imunologia , Humanos , Sistema Imunitário/efeitos dos fármacos , Incidência , Mycobacterium avium subsp. paratuberculosis/imunologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Paratuberculose/imunologia , Paratuberculose/microbiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tuberculose/imunologia , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29423382

RESUMO

A shared genetic pre-disposition, chronic inflammation, and treatment with similar biologics between Rheumatoid arthritis (RA) and Crohn's disease (CD) have intrigued us to investigate whether the two disorders share trigger association or possible causation. We hypothesized earlier that Single Nucleotide Polymorphisms (SNPs) in the negative regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response, susceptibility to environmental triggers, and continued apoptosis as seen in chronic inflammation in RA and CD. To test the hypothesis, peripheral leukocytes samples from 132 consented subjects were genotyped for 9 SNPs in PTPN2/22 using TaqMan™ genotyping. The effect of the SNPs on PTPN2/22 and IFN-γ expression was determined using real time PCR. T-cell proliferation and response to phytohematoagglutonin (PHA) mitogen and mycobacterial antigens were determined by BrdU proliferation assay. Blood samples were also analyzed for the Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. Out of 9 SNPs examined, heterozygous (TC) or minor (CC) alleles of PTPN2:rs478582 occurred in 79% RA compared to 60% healthy controls (p-values ≤ 0.05; OR = 2.28). Similarly, heterozygous (GA) or minor (AA) alleles of PTPN22:rs2476601 occurred in 29% RA compared to 6% healthy controls (p-values ≤ 0.05; OR = 5.90). PTPN2/22 expression in RA was decreased by 1.2-fold compared to healthy controls. PTPN2:rs478582 upregulated IFN-γ in RA by 1.5-fold. Combined PTPN2:rs478582 and PTPN22:rs2476601 increased T-cell proliferation by 2.7-fold when treated with PHA. Surprisingly, MAP DNA was detected in 34% of RA samples compared to 8% healthy controls, (p-values ≤ 0.05, OR = 5.74). RA samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more positive for MAP than samples without polymorphisms. Combined occurrence of PTPN2:rs478582 and PTPN22:rs2476601 in association with the presence of MAP has significantly increased T-cell response and elevated IFN-γ expression in RA samples. The data suggest that genetic polymorphisms may play vital role in T-cell regulation, susceptibility to mycobacteria and ultimately response to treatment. This is the first study to report the detection of MAP DNA in the blood of RA patients; further studies are needed using larger number of samples.


Assuntos
Artrite Reumatoide/etiologia , Infecções por Mycobacterium/complicações , Infecções por Mycobacterium/genética , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Idoso , Alelos , Artrite Reumatoide/tratamento farmacológico , Biomarcadores , Comorbidade , Suscetibilidade a Doenças , Feminino , Genótipo , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Mutação
9.
World J Gastroenterol ; 24(6): 657-670, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29456405

RESUMO

AIM: To establish the relationship of protein tyrosine phosphatase non-receptor type 2 and 22 (PTPN2/22) polymorphisms and mycobacterial infections in Crohn's disease (CD). METHODS: All 133 subjects' blood samples were genotyped for nine single nucleotide polymorphisms (SNPs) in PTPN2/22 using TaqMan™ genotyping, while the effect of the SNPs on PTPN2/22 and IFN-γ gene expression was determined using RT-PCR. Detection of Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene was done by nPCR after DNA extraction from the isolated leukocytes of each subjects' blood samples. T-cells isolated from the patient samples were tested for response to phytohematoagglutonin (PHA) mitogen or mycobacterial antigens by BrdU proliferation assays for T-cell activity. RESULTS: Out of the nine SNPs examined, subjects with either heterozygous (TC)/minor (CC) alleles in PTPN2:rs478582 occurred in 83% of CD subjects compared to 61% healthy controls (P-values < 0.05; OR = 3.03). Subjects with either heterozygous (GA)/minor (AA) alleles in PTPN22:rs2476601 occurred in 16% of CD compared to 6% healthy controls (OR = 2.7). Gene expression in PTPN2/22 in CD subjects was significantly decreased by 2 folds compared to healthy controls (P-values < 0.05). IFN-γ expression levels were found to be significantly increased by approxiately 2 folds in subjects when either heterozygous or minor alleles in PTPN2:rs478582 and/or PTPN22:rs2476601 were found (P-values < 0.05). MAP DNA was detected in 61% of CD compared to only 8% of healthy controls (P-values < 0.05, OR = 17.52), where subjects with either heterozygous or minor alleles in PTPN2:rs478582 and/or PTPN22:rs2476601 had more MAPbacteremia presence than subjects without SNPs did. The average T-cell proliferation in CD treated with PHA or mycobacteria antigens was, respectively, 1.3 folds and 1.5 folds higher than healthy controls without any significant SNP. CONCLUSION: The data suggests that SNPs in PTPN2/22 affect the negative regulation of the immune response in CD patients, thus leading to an increase in inflammation/apoptosis and susceptibility of mycobacteria.


Assuntos
Doença de Crohn/genética , DNA Bacteriano/isolamento & purificação , Paratuberculose/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Adulto , Idoso , Alelos , Antígenos de Bactérias/imunologia , Apoptose/genética , Apoptose/imunologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Doença de Crohn/sangue , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mitógenos/farmacologia , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/sangue , Paratuberculose/imunologia , Paratuberculose/microbiologia , Fito-Hemaglutininas/farmacologia , Polimorfismo de Nucleotídeo Único , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-26734582

RESUMO

Genome wide association studies have identified several genes that might be associated with increase susceptibility to Type 1 Diabetes (T1D) and Crohn's disease. Both Crohn's disease and T1D have a profound impact on the lives of patients and it is pivotal to investigate the genetic role in patients acquiring these diseases. Understanding the effect of single nucleotide polymorphisms (SNP's) in key genes in patients suffering from T1D and Crohn's disease is crucial to finding an effective treatment and generating novel therapeutic drugs. This review article is focused on the impact of SNP's in PTPN2 (protein tyrosine phosphatase, non-receptor type 2) and PTPN22 (protein tyrosine phosphatase non-receptor type 22) on the development of Crohn's disease and T1D. The PTPN2 gene mutation in T1D patients play a direct role in the destruction of beta cells while in Crohn's disease patients, it modulates the innate immune responses. The PTPN22 gene mutations also play a role in both diseases by modulating intracellular signaling. Examining the mechanism through which these genes increase the susceptibility to both diseases and gaining a better understanding of their structure and function is of vital importance to understand the etiology and pathogenesis of Type 1 Diabetes and Crohn's disease.


Assuntos
Doença de Crohn/genética , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...