Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 311: 114832, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303596

RESUMO

Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.

2.
Environ Sci Pollut Res Int ; 27(16): 20173-20186, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32236809

RESUMO

The utilization of natural zeolite (NZ) as an adsorbent for NH4+ removal was investigated. Three types of NZ (i.e., NZ01, NZ02, and NZ03) were characterized, and their NH4+ adsorption process in aqueous solution was evaluated. The effect of pH towards NH4+ adsorption showed that the NZ01 has the highest NH4+ adsorption capacity compared with other natural zeolites used. The application of NZ01 for a simultaneous removal of NH4+ and turbidity in synthetic NH4+-kaolin suspension by adsorptive coagulation process for treating drinking water was studied. The addition of NZ01 into the system increased the NH4+ removal efficiency (ηNH4+) from 11.64% without NZ01 to 41.86% with the addition of 0.2 g L-1 of NZ01. The turbidity removal (ηT), however, was insignificantly affected since the ηT was already higher than 98.0% over all studied parameter's ranges. The thermodynamic and kinetic data analyses suggested that the removal of NH4+ obeyed the Temkin isotherm model and pseudo-second-order kinetic model, respectively. Generally, the turbidity removal was due to the flocculation of destabilized solid particles by alum in the suspension system. The ηNH4+ in surface water was 29.31%, which is lower compared with the removal in the synthetic NH4+-kaolin suspension, but a high ηT (98.65%) was observed. It was found that the addition of the NZ01 could enhance the removal of NH4+ as well as other pollutants in the surface water.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Cinética
3.
Chemosphere ; 247: 125932, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069719

RESUMO

Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Ecossistema , Poluentes Ambientais , Hidrocarbonetos/análise , Petróleo , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Água , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...