Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Respir Med ; : 1-7, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38973767

RESUMO

BACKGROUND: Several methods exist to reduce the number of arterial blood gases (ABGs). One method, Roche v-TAC, has been evaluated in different patient groups. This paper aggregates data from these studies, in different patient categories using common analysis criteria. RESEARCH DESIGN AND METHODS: We included studies evaluating v-TAC based on paired arterial and peripheral venous blood samples. Bland-Altman analysis compared measured and calculated arterial values of pH, PCO2, and PO2. Subgroup analyses were performed for normal, chronic hypercapnia and chronic base excess, acute hyper- and hypocapnia, and acute and chronic base deficits. RESULTS: 811 samples from 12 studies were included. Bias and limits of agreement for measured and calculated values: pH 0.001 (-0.029 to 0.031), PCO2 -0.08 (-0.65 to 0.49) kPa, and PO2 0.04 (-1.71 to 1.78) kPa, with similar values for all sub-group analyses. CONCLUSION: These data suggest that v-TAC analysis may have a role in replacing ABGs, avoiding arterial puncture. Substantial data exist in patients with chronic hypercapnia and chronic base excess, acute hyper- and hypocapnia, and in patients with relatively normal acid-base status, with similar bias and precision across groups and across study data. Limited data exist for patients with acute and chronic base deficits.

2.
J Clin Monit Comput ; 36(5): 1333-1340, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34647198

RESUMO

Hyper- or hypoventilation are commonly occurring stress responses to arterial puncture around the time of blood sampling and have been shown to rapidly alter arterial blood acid-base parameters. This study aimed to evaluate a physiology-based mathematical method to transform peripheral venous blood acid-base values into mathematically arterialised equivalents following acute, transient changes in ventilation. Data from thirty patients scheduled for elective surgery were analysed using the physiology-based method. These data described ventilator changes simulating 'hyper-' or 'hypoventilation' at arterial puncture and included acid-base status from simultaneously drawn blood samples from arterial and peripheral venous catheters at baseline and following ventilatory change. Venous blood was used to calculate mathematically arterialised equivalents using the physiology-based method; baseline values were analysed using Bland-Altman plots. When compared to baseline, measured arterial and calculated arterialised values at each time point within limits of pH: ± 0.03 and PCO2: ± 0.5 kPa, were considered 'not different from baseline'. Percentage of values considered not different from baseline were calculated at each sampling timepoint following hyper- and hypoventilation. For the physiological method, bias and limits of agreement for pH and PCO2 were -0.001 (-0.022 to 0.020) and -0.02 (-0.37 to 0.33) kPa at baseline, respectively. 60 s following a change in ventilation, 100% of the mathematically arterialised values of pH and PCO2 were not different from baseline, compared to less than 40% of the measured arterial values at the same timepoint. In clinical situations where transient breath-holding or hyperventilation may compromise the accuracy of arterial blood samples, arterialised venous blood is a stable representative of steady state arterial blood.


Assuntos
Dióxido de Carbono , Cateterismo Periférico , Gasometria/métodos , Cateterismo Periférico/métodos , Humanos , Concentração de Íons de Hidrogênio , Respiração , Veias
3.
Comput Methods Programs Biomed ; 203: 106022, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713960

RESUMO

BACKGROUND: Assessment of the critically ill patient requires arterial acid-base status. Venous blood could provide a surrogate, with methods transforming venous values to arterial, improving their utility. This manuscript compares two of these methods, a statistical and a physiological method. Where these methods are inadequate to describe critically ill patients, physiological mechanisms are explored to explain discrepancies. METHODS: 1109 paired arterial and central-venous blood samples, from patients diagnosed with acute circulatory failure, were available for retrospective analysis. Of these, 386 samples were used previously to validate the statistical model. The statistical method of Boulain et al. 2016 and the physiological method of Rees et al. 2006 were applied to the 386 sample pairs, and compared using Bland-Altman analysis. A subset of the 1109 samples, where the physiological method could not accurately calculate arterial values, were analysed further to assess the necessary addition of CO2 or strong acid at the tissues to account for arterio-venous differences. RESULTS: Bias (LoA) for comparison of calculated and measured arterial values (n = 386) were similar for the statistical method (pH: -0.003 (-0.051 to 0.045), PCO2: -0.02 (-1.33 to 1.29 kPa)) and physiological method (pH: 0.009 (-0.033 to 0.052), PCO2: -0.08 (-1.20 to 1.03 kPa)). In the 381 cases (of the 1109 sample pairs) defined as not accurately described, addition of a median CO2 concentration of 0.72 mmol/l in excess of aerobic metabolism, explained this for 333 cases, with the remainder requiring simultaneous strong acid transport. CONCLUSION: Both methods appear equal in their ability to transform central-venous values to arterial, albeit warranting caution when using either in a critically ill population. The physiological approach was able to describe arterio-venous differences not explained by aerobic metabolism alone.


Assuntos
Estado Terminal , Veias , Artérias , Gasometria , Humanos , Concentração de Íons de Hidrogênio , Estudos Retrospectivos , Veias/diagnóstico por imagem
4.
BMJ Open Respir Res ; 8(1)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33737311

RESUMO

BACKGROUND: Early diagnosis of shock is a predetermining factor for a good prognosis in intensive care. An elevated central venous to arterial PCO2 difference (∆PCO2) over 0.8 kPa (6 mm Hg) is indicative of low blood flow states. Disturbances around the time of blood sampling could result in inaccurate calculations of ∆PCO2, thereby misrepresenting the patient status. This study aimed to determine the influences of acute changes in ventilation on ∆PCO2 and understand its clinical implications. METHODS: To investigate the isolated effects of changes in ventilation on ∆PCO2, eight pigs were studied in a prospective observational cohort. Arterial and central venous catheters were inserted following anaesthetisation. Baseline ventilator settings were titrated to achieve an EtCO2 of 5±0.5 kPa (VT = 8 mL/kg, Freq = 14 ± 2/min). Blood was sampled simultaneously from both catheters at baseline and 30, 60, 90, 120, 180 and 240 s after a change in ventilation. Pigs were subjected to both hyperventilation and hypoventilation, wherein the respiratory frequency was doubled or halved from baseline. ∆PCO2 changes from baseline were analysed using repeated measures ANOVA with post-hoc analysis using Bonferroni's correction. RESULTS: ∆PCO2 at baseline for all pigs was 0.76±0.29 kPa (5.7±2.2 mm Hg). Following hyperventilation, there was a rapid increase in the ∆PCO2, increasing maximally to 1.35±0.29 kPa (10.1±2.2 mm Hg). A corresponding decrease in the ∆PCO2 was seen following hypoventilation, decreasing maximally to 0.23±0.31 kPa (1.7±2.3 mm Hg). These changes were statistically significant from baseline 30 s after the change in ventilation. CONCLUSION: Disturbances around the time of blood sampling can rapidly affect the PCO2, leading to inaccurate calculations of the ∆PCO2, resulting in misinterpretation of patient status. Care should be taken when interpreting blood gases, if there is doubt as to the presence of acute and transient changes in ventilation.


Assuntos
Dióxido de Carbono , Respiração , Animais , Gasometria , Humanos , Suínos
5.
Scand J Trauma Resusc Emerg Med ; 29(1): 35, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596977

RESUMO

BACKGROUND: ABGs are performed in acute conditions as the reference method for assessing the acid-base status of blood. Hyperventilation and breath-holding are common ventilatory changes that occur around the time of sampling, rapidly altering the 'true' status of the blood. This is particularly relevant in emergency medicine patients without permanent arterial catheters, where the pain and anxiety of arterial punctures can cause ventilatory changes. This study aimed to determine whether peripheral venous values could be a more reliable measure of blood gases following acute changes in ventilation. METHODS: To allow for characterisation of ventilatory changes typical of acutely ill patients, but without the confounding influence of perfusion or metabolic disturbances, 30 patients scheduled for elective surgery were studied in a prospective observational study. Following anaesthesia, and before the start of the surgery, ventilator settings were altered to achieve a + 100% or - 60% change in alveolar ventilation ('hyper-' or 'hypoventilation'), changes consistent with the anticipation of a painful arterial puncture commonly encountered in the emergency room. Blood samples were drawn simultaneously from indwelling arterial and peripheral venous catheters at baseline, and at 15, 30, 45, 60, 90 and 120 s following the ventilatory change. Comparisons between the timed arterial (or venous) samples were done using repeated-measures ANOVA, with post-hoc analysis using Bonferroni's correction. RESULTS: Arterial blood pH and PCO2 changed rapidly within the first 15-30s after both hyper- and hypoventilation, plateauing at around 60s (∆pH = ±0.036 and ∆PCO2 = ±0.64 kPa (4.7 mmHg), respectively), with peripheral venous values remaining relatively constant until 60s, and changing minimally thereafter. Mean arterial changes were significantly different at 30s (P < 0.001) when compared to baseline, in response to both hyper- and hypoventilation. CONCLUSION: This study has shown that substantial differences in arterial and peripheral venous acid-base status can be due to acute changes in ventilation, commonly seen in the ER over the 30s necessary to sample arterial blood. If changes are transient, peripheral venous blood may provide a more reliable description of acid-base status.


Assuntos
Equilíbrio Ácido-Base , Gasometria , Hiperventilação/sangue , Hipoventilação/sangue , Gasometria/métodos , Dióxido de Carbono/sangue , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Estudos Prospectivos , Veias
6.
Respiration ; 100(2): 164-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33494091

RESUMO

BACKGROUND: Arterial blood gases are important when assessing acute or critically ill patients. Capillary blood and mathematical arterialization of venous blood have been proposed as alternative methods, eliminating pain and complications of arterial puncture. OBJECTIVES: This study compares the arterial samples, arterialized venous samples, and capillary samples in ICU and pulmonary ward patients. METHOD: Ninety-one adult patients with respiratory failure were included in the analysis. Arterial, peripheral venous, and mathematically arterialized venous samples were compared in all patients using Bland-Altman analysis, with capillary samples included in 36 patients. RESULTS: Overall for pH and PCO2, arterialized venous values, and in the subset of 36 patients, capillary values, compared well to arterial values and were within the pre-defined clinically acceptable differences (pH ± 0.05 and PCO2 ± 0.88 kPa). For PO2, arterialized or capillary values describe arterial with similar precision (PO2 arterialized -0.03, LoA -1.48 to 1.42 kPa and PO2 capillary 0.82, LoA -1.36 to 3 kPa), with capillary values underestimating arterial. CONCLUSIONS: Mathematical arterialization functions well in a range of patients in an ICU and ward outside the country of development of the method. Furthermore, accuracy and precision are similar to capillary blood samples. When considering a replacement for arterial sampling in ward patients, using capillary sampling or mathematical arterialization should depend on logistic ease of implementation and use rather than improved measurements of using either technique.


Assuntos
Gasometria/métodos , Dióxido de Carbono/sangue , Concentração de Íons de Hidrogênio , Conceitos Matemáticos , Oxigênio/sangue , Adulto , Idoso , Artérias , Estado Terminal , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Veias
7.
Physiol Rep ; 7(3): e13963, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30734533

RESUMO

The selection of cadence during cycling may be determined by a number of factors, including the degree of oxygenation in the exercising skeletal muscle. The purpose of this study was to determine the degree of muscle oxygenation associated with different cycling cadences and exercise intensities, and its putative role in the choice of self-selected cadence during cycling. We recorded cardiopulmonary and metabolic responses to cycling at exercise intensities of 70% and 90% of the ventilatory threshold (Tvent ), and used near-infrared spectroscopy to determine tissue saturation index as a measure of skeletal muscle (vastus lateralis) oxygenation. Twelve participants cycled at cadences of 30, 50, 70, 90, and 110 revolutions per minute (rpm), each for 4 min, in a randomized sequence, interspersed with active recovery periods. Despite cardiopulmonary and metabolic responses being greater at 90% than at 70% Tvent , and at 110 rpm compared with lower cadences, vastus lateralis oxygenation was not different between the two exercise intensities and five cadences tested. Our results indicate that skeletal muscle tissue saturation index is not substantially affected during cycling for short periods of time at constant, moderate exercise intensity at cadences between 30 and 110 rpm, suggesting that skeletal muscle oxygenation may not be an important negative feedback signal in the choice of self-selected cadence during cycling at moderate exercise intensity.


Assuntos
Ciclismo , Exercício Físico , Contração Muscular , Força Muscular , Consumo de Oxigênio , Músculo Quadríceps/fisiologia , Adulto , Biomarcadores/sangue , Aptidão Cardiorrespiratória , Feminino , Humanos , Ácido Láctico/sangue , Masculino , Músculo Quadríceps/metabolismo , Distribuição Aleatória , Fatores de Tempo , Adulto Jovem
8.
Public Health Nutr ; 19(17): 3210-3215, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27253267

RESUMO

OBJECTIVE: Routine high-dose Fe supplementation in non-anaemic pregnant women may induce oxidative stress and eventually affect birth outcomes. The aim of the present study was to measure oxidative stress markers in pregnant women with low/normal and high Hb values in trimester 1 (Hb1) and to relate these to birth weight. DESIGN: A cross-sectional study where selected oxidative stress markers were analysed in both maternal (trimester 1; T1) and cord blood samples and correlated with birth weight. SETTING: A tertiary hospital in urban South India. SUBJECTS: One hundred women were chosen based on their Hb1 values (forty women with low/normal Hb1 (<110 g/l) and sixty women with high Hb1 (≥120 g/l)). RESULTS: In T1, women with high Hb1 values were found to have lower paraoxonase-1 (PON-1) activity (424·7 (sd 163·7) v. 532·9 (sd 144·7) pmol p-nitrophenol formed/min per ml plasma, P=0·002) and higher lipid peroxides compared with women with low/normal Hb1. Routine supplementation of Fe to these women resulted in persistent lower PON-1 activity in cord blood (P=0·02) and directionally lower (P=0·142) birth weights. Furthermore, women with high Hb1 who delivered low-birth-weight babies were observed to have lowest PON-1 activity in T1. No changes were observed in other markers (myeloperoxidase activity and total antioxidant levels). CONCLUSIONS: Routine Fe supplementation in pregnant women with high Hb1 associated with increased oxidative stress, as reflected by low PON-1 activity in T1, could potentially lead to deleterious effects on birth weight.


Assuntos
Peso ao Nascer , Estresse Oxidativo , Adulto , Antioxidantes/metabolismo , Arildialquilfosfatase/metabolismo , Estudos Transversais , Feminino , Sangue Fetal/química , Hemoglobinas/análise , Humanos , Índia , Peróxidos Lipídicos/sangue , Nitrofenóis/sangue , Peroxidase/metabolismo , Gravidez , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...